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Principle of Inclusion-Exclusion

Principle of Inclusion-Exclusion
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Principle of Inclusion-Exclusion Simple form

Simple form

A well-known formula

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3|−
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|+
+ |A1 ∩ A2 ∩ A3|

Theorem

Given sets A1,A2, ...,An, we have the following formula for the number of
elements in the union:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k+1

 ∑
1≤i1<i2...<ik≤n

|Ai1 ∩ Ai2 ∩ ... ∩ Aik |

 .
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Principle of Inclusion-Exclusion Algebraic form

Algebraic form

Theorem (Principle of Inclusion-Exclusion)

Let S be an set with n elements. Let V be the 2n- dimensional vector
space (over some field K) of all functions f : 2S → K. Let φ : V → V be
the linear transformation defined by:

φf (T ) =
∑
Y⊇T

f (Y ),∀T ⊆ S

Then ∀T ⊆ S :
φ−1f (T ) =

∑
Y⊇T

(−1)|Y−T |f (Y ).
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Principle of Inclusion-Exclusion Example

Applications

A typical setting

A – a set of objects we study, e.g. a set of humanoids

S – a set of interesting properties of the objects in a set A, e.g. elf,
religious, female

T – a subset of S , e.g. is elf

f=(T ) is the number of objects in A that have only the properties in
the set T

f≥(T ) = φ(f=(T )) =
∑

Y⊇T f=(Y ) is the number of objects in A
that have at least the properties in the set T

If we know f≥(T ), then we can compute f=(T ) as:
f=(T ) =

(
φ−1f≥

)
(T ) =

∑
Y⊇T (−1)|Y−T |f (Y )
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Principle of Inclusion-Exclusion Example

Example

Let us consider a fantasy town, and assume that there were two surveys.

Results of the first survey:

2100 female humanoids

950 human women and 900 female elves

1900 humans and 1850 elves

Results of the second survey:

1000 religious humanoids

200 religious humans and 500 religious elves

50 religious human women and 300 religious female elves

Question

How many non-religious male elves are there?
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Principle of Inclusion-Exclusion Example

Example

Setting

A = {all humanoids in town }
S = {female, elf, religious}

Observation

Number of non-religious male elves is f=({elf})

Calculation

f=({elf}) = f≥({elf})− f≥({female, elf})− f≥({religious, elf})+

+ f≥({religious, female, elf}) =

= 1850− 900− 500 + 300 = 750
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Generating Functions

Generating functions
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Generating Functions Introduction

Introduction

Definitions

An ordinary generating function of a sequence f (n) is a formal power series

F (x) =
∑
n≥0

f (n)xn,

while its exponential generating function is

G (x) =
∑
n≥0

f (n)
xn

n!
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Generating Functions Rational generating functions

Fundamental property of rational generating functions

Theorem

Let α1, α2, ..., αd ∈ C, d ≥ 1, and αd 6= 0

The following conditions on a function f : N→ C are equivalent:

a. ∑
n≥0

f (n)xn =
P(x)

Q(x)
,

where Q(x) = 1 + α1x + α2x
2 + ...+ αdx

d , and
P(x) is a polynomial in x of degree less than d .

b.

∀n ≥ 0:

f (n + d) + α1f (n + d − 1) + α2f (n + d − 2) + ...αd f (n) = 0
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Generating Functions Fibonacci numbers

Generating function for Fibonacci sequence

Important Example

f (n) = Fn - Fibonacci sequence

Compare Fn+2 − Fn+1 − Fn = 0 with statement b. to obtain from a.∑
n≥0

Fnx
n =

ax + b

1− x − x2

and from initial conditions F0 = 0 and F1 = 1∑
n≥0

Fnx
n =

x

1− x − x2
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Generating Functions Fibonacci numbers

Explicit expression for Fibonacci numbers

Equivalently ∑
n≥0

Fnx
n =

x

(1− ϕx)(1− ϕ̄x)

with ϕ =
1 +
√

5

2
and ϕ̄ =

1−
√

5

2
= 1− ϕ = − 1

ϕ

Hence as the Taylor series coefficients

Fn =
ϕn − ϕ̄n

√
5
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Alternating Permutations and Euler Numbers Definitions

Alternating Permutations and Euler Numbers

Let Sn be a set of permutations of [n].
A permutation w = w1w2...wn ∈ Sn is alternating if

w1 > w2 < w3 > w4 < ...

Definition

The number of alternating permutations w ∈ Sn is called
an Euler number En (with E0 = 1).
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Alternating Permutations and Euler Numbers Definitions

Reverse Alternating Permutations

A permutation w = w1w2...wn ∈ Sn is reverse alternating if

w1 < w2 > w3 < w4 > ...

Proposition

The number of reverse alternating permutations in Sn is also En.

Proof

Since w = w1w2...wn ∈ Sn is alternating if and only if

w̃ = (n + 1− w1) (n + 1− w2)... (n + 1− wn)

is reverse alternating, there are as many reverse alternating as alternating
permutations in Sn.
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Alternating Permutations and Euler Numbers Theorem

Generating Function for Euler Numbers

Theorem

The exponential generating function for Euler numbers is∑
n≥0

En
xn

n!
= sec x + tan x

Since sec x is an even function and tan x is odd, this is equivalent to∑
n≥0

E2n
x2n

(2n)!
= sec x

∑
n≥0

E2n+1
x2n+1

(2n + 1)!
= tan x
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Alternating Permutations and Euler Numbers Proof

Proof

Let S ⊂ [n] with #S = k , and S̄ = [n] \ S . Choose reverse alternating
permutations u of S and v of S̄ in Ek and En−k ways. If n ≥ 1,

w = ur ∗ (n + 1) ∗ v

uniquely represents every alternating and reverse alternating permutation
of [n + 1]. Hence

2En+1 =
n∑

k=0

(
n

k

)
EkEn−k , n ≥ 1

For G (x) =
∑

n≥0 En
xn

n! with E0 = E1 = 1,

2G ′ = G 2 + 1, G (0) = 1

G (x) = sec x + tan x
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