Enumerative Combinatorics

Nathaniel Liberman
Nhat Pham
Mentor: Svetlana Makarova
MIT PRIMES

December 15, 2017

Plan

(1) Principle of Inclusion-Exclusion

- Simple form
- Algebraic form
- Example
(2) Generating Functions
- Introduction
- Rational generating functions
- Fibonacci numbers
(3) Alternating Permutations and Euler Numbers
- Definitions
- Theorem
- Proof

Principle of Inclusion-Exclusion

Simple form

A well-known formula

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup A_{3}\right| & =\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|- \\
& -\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+ \\
& +\left|A_{1} \cap A_{2} \cap A_{3}\right|
\end{aligned}
$$

Theorem

Given sets $A_{1}, A_{2}, \ldots, A_{n}$, we have the following formula for the number of elements in the union:

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k+1}\left(\sum_{1 \leq i_{1}<i_{2} \ldots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right|\right) .
$$

Algebraic form

Theorem (Principle of Inclusion-Exclusion)
Let S be an set with n elements. Let V be the 2^{n} - dimensional vector space (over some field \mathbb{K}) of all functions $f: 2^{S} \rightarrow \mathbb{K}$. Let $\phi: V \rightarrow V$ be the linear transformation defined by:

$$
\phi f(T)=\sum_{Y \supseteq T} f(Y), \forall T \subseteq S
$$

Then $\forall T \subseteq S$:

$$
\phi^{-1} f(T)=\sum_{Y \supseteq T}(-1)^{|Y-T|} f(Y)
$$

Applications

A typical setting

- A - a set of objects we study, e.g. a set of humanoids
- S - a set of interesting properties of the objects in a set A, e.g. elf, religious, female
- T - a subset of S, e.g. is elf
- $f_{=}(T)$ is the number of objects in A that have only the properties in the set T
- $f_{\geq}(T)=\phi\left(f_{=}(T)\right)=\sum_{Y \supseteq T} f_{=}(Y)$ is the number of objects in A that have at least the properties in the set T
- If we know $f_{\geq}(T)$, then we can compute $f_{=}(T)$ as:
$f_{=}(T)=\left(\phi^{-1} f_{\geq}\right)(T)=\sum_{Y \supseteq T}(-1)^{|Y-T|} f(Y)$

Example

Let us consider a fantasy town, and assume that there were two surveys.
Results of the first survey:

- 2100 female humanoids
- 950 human women and 900 female elves
- 1900 humans and 1850 elves

Results of the second survey:

- 1000 religious humanoids
- 200 religious humans and 500 religious elves
- 50 religious human women and 300 religious female elves

Question
How many non-religious male elves are there?

Example

Setting

A $=\{$ all humanoids in town $\}$
$S=\{$ female, elf, religious $\}$

Observation
Number of non-religious male elves is $f_{=}(\{\mathrm{elf}\})$

Calculation

$$
\begin{aligned}
f_{=}(\{\text {elf }\}) & =f_{\geq}(\{\text {elf }\})-f_{\geq}(\{\text {female, elf }\})-f_{\geq}(\{\text {religious, elf }\})+ \\
& +f_{\geq}(\{\text {religious, female, elf }\})= \\
& =1850-900-500+300=750
\end{aligned}
$$

Generating functions

Introduction

Definitions
An ordinary generating function of a sequence $f(n)$ is a formal power series

$$
F(x)=\sum_{n \geq 0} f(n) x^{n},
$$

while its exponential generating function is

$$
G(x)=\sum_{n \geq 0} f(n) \frac{x^{n}}{n!}
$$

Fundamental property of rational generating functions

Theorem

$$
\text { Let } \quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in \mathbb{C}, \quad d \geq 1, \quad \text { and } \quad \alpha_{d} \neq 0
$$

The following conditions on a function $f: \mathbb{N} \rightarrow \mathbb{C}$ are equivalent:
a.

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{P(x)}{Q(x)}
$$

where $Q(x)=1+\alpha_{1} x+\alpha_{2} x^{2}+\ldots+\alpha_{d} x^{d}$, and $P(x)$ is a polynomial in x of degree less than d.
b.
$\forall n \geq 0$:

$$
f(n+d)+\alpha_{1} f(n+d-1)+\alpha_{2} f(n+d-2)+\ldots \alpha_{d} f(n)=0
$$

Generating function for Fibonacci sequence

Important Example

$$
f(n)=F_{n} \quad \text { - Fibonacci sequence }
$$

Compare $F_{n+2}-F_{n+1}-F_{n}=0$ with statement b. to obtain from a.

$$
\sum_{n \geq 0} F_{n} x^{n}=\frac{a x+b}{1-x-x^{2}}
$$

and from initial conditions $F_{0}=0$ and $F_{1}=1$

$$
\sum_{n \geq 0} F_{n} x^{n}=\frac{x}{1-x-x^{2}}
$$

Explicit expression for Fibonacci numbers

Equivalently

$$
\begin{gathered}
\sum_{n \geq 0} F_{n} x^{n}=\frac{x}{(1-\varphi x)(1-\bar{\varphi} x)} \\
\text { with } \varphi=\frac{1+\sqrt{5}}{2} \text { and } \bar{\varphi}=\frac{1-\sqrt{5}}{2}=1-\varphi=-\frac{1}{\varphi}
\end{gathered}
$$

Hence as the Taylor series coefficients

$$
F_{n}=\frac{\varphi^{n}-\bar{\varphi}^{n}}{\sqrt{5}}
$$

Alternating Permutations and Euler Numbers

Let $\mathfrak{S}_{\mathfrak{n}}$ be a set of permutations of $[n]$.
A permutation $w=w_{1} w_{2} \ldots w_{n} \in \mathfrak{S}_{\mathfrak{n}}$ is alternating if

$$
w_{1}>w_{2}<w_{3}>w_{4}<\ldots
$$

Definition
The number of alternating permutations $w \in \mathfrak{S}_{\mathfrak{n}}$ is called an Euler number E_{n} (with $E_{0}=1$).

Reverse Alternating Permutations

A permutation $w=w_{1} w_{2} \ldots w_{n} \in \mathfrak{S}_{\mathfrak{n}}$ is reverse alternating if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\ldots
$$

Proposition

The number of reverse alternating permutations in $\mathfrak{S}_{\mathfrak{n}}$ is also E_{n}.

Proof
Since $w=w_{1} w_{2} \ldots w_{n} \in \mathfrak{S}_{\mathfrak{n}}$ is alternating if and only if

$$
\tilde{w}=\left(n+1-w_{1}\right)\left(n+1-w_{2}\right) \ldots\left(n+1-w_{n}\right)
$$

is reverse alternating, there are as many reverse alternating as alternating permutations in $\mathfrak{S}_{\mathfrak{n}}$.

Generating Function for Euler Numbers

Theorem

The exponential generating function for Euler numbers is

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

Since $\sec x$ is an even function and $\tan x$ is odd, this is equivalent to

$$
\begin{gathered}
\sum_{n \geq 0} E_{2 n} \frac{x^{2 n}}{(2 n)!}=\sec x \\
\sum_{n \geq 0} E_{2 n+1} \frac{x^{2 n+1}}{(2 n+1)!}=\tan x
\end{gathered}
$$

Proof

Let $S \subset[n]$ with $\# S=k$, and $\bar{S}=[n] \backslash S$. Choose reverse alternating permutations u of S and v of \bar{S} in E_{k} and E_{n-k} ways. If $n \geq 1$,

$$
w=u^{r} *(n+1) * v
$$

uniquely represents every alternating and reverse alternating permutation of $[n+1]$. Hence

$$
2 E_{n+1}=\sum_{k=0}^{n}\binom{n}{k} E_{k} E_{n-k}, \quad n \geq 1
$$

For $G(x)=\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}$ with $E_{0}=E_{1}=1$,

$$
\begin{gathered}
2 G^{\prime}=G^{2}+1, \quad G(0)=1 \\
G(x)=\sec x+\tan x
\end{gathered}
$$

