Hyperplane Arrangements
 Intersection Posets, Characteristic Polynomials, and Regions

Ashley Chen Allen Wang

December 2017

Motivating Questions

Example

If n points are selected from a circle, and all $\binom{n}{2}$ lines joining pairs of the n points are drawn, then what is the maximum number of regions created in the circle?

Example

What is the maximum number of "regions" determined by n hyperplanes with dimension $d-1$ in \mathbb{R}^{d} ?

Motivating Questions

Example

If n points are selected from a circle, and all $\binom{n}{2}$ lines joining pairs of the n points are drawn, then what is the maximum number of regions created in the circle?

The maximum, $\binom{n}{4}+\binom{n}{2}+\binom{n}{0}$, is achieved when no three lines intersect at a point (general position).

Example

What is the maximum number of "regions" determined by n hyperplanes with dimension $d-1$ in \mathbb{R}^{d} ?

The maximum, $\sum_{k=0}^{d}\binom{n}{k}$, is achieved when the hyperplanes are taken in general position.

Preliminary Definitions

Definition

For a field K, define an $n-1$ dimensional affine hyperplane of K^{n} as the affine subspace $\left\{v \in K^{n}: a \cdot v=b\right\}$.

Preliminary Definitions

Definition

For a field K, define an $n-1$ dimensional affine hyperplane of K^{n} as the affine subspace $\left\{v \in K^{n}: a \cdot v=b\right\}$.

Definition
A finite hyperplane arrangement is a finite set \mathcal{A} of $n-1$ dimensional affine hyperplanes in a finite dimensional vector space K^{n}.

Preliminary Definitions

Definition

For a field K, define an $n-1$ dimensional affine hyperplane of K^{n} as the affine subspace $\left\{v \in K^{n}: a \cdot v=b\right\}$.

Definition
A finite hyperplane arrangement is a finite set \mathcal{A} of $n-1$ dimensional affine hyperplanes in a finite dimensional vector space K^{n}.

Definition

The dimension of an arrangement \mathcal{A} in K^{n} denoted $\operatorname{dim}(\mathcal{A})$ is the integer n. The rank of the arrangement denoted $\operatorname{rank}(\mathcal{A})$ is the dimension of the space spanned by the normals to the hyperplanes.

The Intersection Poset and Characteristic Polynomial

Definition
Define the intersection poset of an arragement \mathcal{A} in $V=K^{n}$, denoted $L(\mathcal{A})$, as the set of all non-empty intersections of sets of hyperplanes $B \in \mathcal{A}$ ordered by reverse inclusion.

The Intersection Poset and Characteristic Polynomial

Definition
Define the intersection poset of an arragement \mathcal{A} in $V=K^{n}$, denoted $L(\mathcal{A})$, as the set of all non-empty intersections of sets of hyperplanes $B \in \mathcal{A}$ ordered by reverse inclusion.

Definition
Define the characteristic polynomial of an arrangement \mathcal{A} as

$$
\chi_{\mathcal{A}}(x)=\sum_{s \in L(\mathcal{A})} \mu(V, s) x^{\operatorname{dim}(s)}
$$

Crosscut Theorem

Theorem

For a finite lattice L and some $X \subseteq L \backslash \hat{0}$ such that $\forall s \in L \backslash \hat{0}, \exists t \in X$ such that $s \geq t$, then

$$
\mu(\hat{0}, \hat{1})=\sum_{k}(-1)^{k} N_{k},
$$

where N_{k} is the number of k-subsets of X whose join is $\hat{1}$.

Crosscut Theorem

Theorem

For a finite lattice L and some $X \subseteq L \backslash \hat{0}$ such that $\forall s \in L \backslash \hat{0}, \exists t \in X$ such that $s \geq t$, then

$$
\mu(\hat{0}, \hat{1})=\sum_{k}(-1)^{k} N_{k},
$$

where N_{k} is the number of k-subsets of X whose join is $\hat{1}$.

- Let $A(L, K)$ be the Möbius algebra of L over a field K with bilinear multiplication $s \cdot t=s \vee t$, defined by the join.

Crosscut Theorem

Theorem

For a finite lattice L and some $X \subseteq L \backslash \hat{0}$ such that $\forall s \in L \backslash \hat{0}, \exists t \in X$ such that $s \geq t$, then

$$
\mu(\hat{0}, \hat{1})=\sum_{k}(-1)^{k} N_{k},
$$

where N_{k} is the number of k-subsets of X whose join is $\hat{1}$.

- Let $A(L, K)$ be the Möbius algebra of L over a field K with bilinear multiplication $s \cdot t=s \vee t$, defined by the join.
- Use the isomorphism from $A(L, K)$ to $K^{\# L}=\bigoplus_{t \in L} K_{t}$.

Crosscut Theorem

Theorem

For a finite lattice L and some $X \subseteq L \backslash \hat{0}$ such that $\forall s \in L \backslash \hat{0}, \exists t \in X$ such that $s \geq t$, then

$$
\mu(\hat{0}, \hat{1})=\sum_{k}(-1)^{k} N_{k},
$$

where N_{k} is the number of k-subsets of X whose join is $\hat{1}$.

- Let $A(L, K)$ be the Möbius algebra of L over a field K with bilinear multiplication $s \cdot t=s \vee t$, defined by the join.
- Use the isomorphism from $A(L, K)$ to $K^{\# L}=\bigoplus_{t \in L} K_{t}$.
- $\sum_{s \leq t} \mu(s, t) t=\delta_{s} \rightarrow \delta_{s}^{\prime}$ where δ_{s}^{\prime} is the identity of K_{s}

Crosscut Theorem

Theorem

For a finite lattice L and some $X \subseteq L \backslash \hat{0}$ such that $\forall s \in L \backslash \hat{0}, \exists t \in X$ such that $s \geq t$, then

$$
\mu(\hat{0}, \hat{1})=\sum_{k}(-1)^{k} N_{k},
$$

where N_{k} is the number of k-subsets of X whose join is $\hat{1}$.

- Let $A(L, K)$ be the Möbius algebra of L over a field K with bilinear multiplication $s \cdot t=s \vee t$, defined by the join.
- Use the isomorphism from $A(L, K)$ to $K^{\# L}=\bigoplus_{t \in L} K_{t}$.
- $\sum_{s \leq t} \mu(s, t) t=\delta_{s} \rightarrow \delta_{s}^{\prime}$ where δ_{s}^{\prime} is the identity of K_{s}
- Then, $\prod_{t \in X}(\hat{0}-t)=\sum_{s} \mu(\hat{0}, s) s$, and consider the coefficient of $\hat{1}$.

Significance of $\chi_{\mathcal{A}}(x)$

Theorem (Whitney)
For arrangement \mathcal{A} in K^{n}, then

$$
\chi_{\mathcal{A}}(x)=\sum_{B \subseteq \mathcal{A}}(-1)^{\# B} x^{n-\operatorname{rank}(B)}
$$

where the sum is taken over all sets of hyperplanes B of \mathcal{A} with a nonempty intersection.

Significance of $\chi_{\mathcal{A}}(x)$

Theorem (Whitney)
For arrangement \mathcal{A} in K^{n}, then

$$
\chi_{\mathcal{A}}(x)=\sum_{B \subseteq \mathcal{A}}(-1)^{\# B} x^{n-\operatorname{rank}(B)}
$$

where the sum is taken over all sets of hyperplanes B of \mathcal{A} with a nonempty intersection.

- For any element $t \in L(A),\left[K^{n}, t\right]$ is a lattice.

Significance of $\chi_{\mathcal{A}}(x)$

Theorem (Whitney)
For arrangement \mathcal{A} in K^{n}, then

$$
\chi_{\mathcal{A}}(x)=\sum_{B \subseteq \mathcal{A}}(-1)^{\# B} x^{n-\operatorname{rank}(B),}
$$

where the sum is taken over all sets of hyperplanes B of \mathcal{A} with a nonempty intersection.

- For any element $t \in L(A),\left[K^{n}, t\right]$ is a lattice.
- Apply the crosscut theorem to $\left[K^{n}, t\right]$ with $X=B$, the set of hyperplanes in \mathcal{A} that contain t.

Significance of $\chi_{\mathcal{A}}(x)$

Theorem (Whitney)
For arrangement \mathcal{A} in K^{n}, then

$$
\chi_{\mathcal{A}}(x)=\sum_{B \subseteq \mathcal{A}}(-1)^{\# B} x^{n-\operatorname{rank}(B),}
$$

where the sum is taken over all sets of hyperplanes B of \mathcal{A} with a nonempty intersection.

- For any element $t \in L(A),\left[K^{n}, t\right]$ is a lattice.
- Apply the crosscut theorem to $\left[K^{n}, t\right]$ with $X=B$, the set of hyperplanes in \mathcal{A} that contain t.
- Since $\operatorname{dim}(t)=n-\operatorname{rank}(B)$, summing over all t gives the theorem.

Recurrence Relationship for the Characteristic Polynomial

Definition
For a hyperplane $H \in \mathcal{A}$, denote $\mathcal{A} \backslash H$ the arrangement without the hyperplane H. Moreover, denote \mathcal{A} / H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in \mathcal{A}$.

Recurrence Relationship for the Characteristic Polynomial

Definition
For a hyperplane $H \in \mathcal{A}$, denote $\mathcal{A} \backslash H$ the arrangement without the hyperplane H. Moreover, denote \mathcal{A} / H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in \mathcal{A}$.

Theorem
Let \mathcal{A} be an arrangement in K^{n} and H be a hyperplane of \mathcal{A}. Then, $\chi_{\mathcal{A}}(x)=\chi_{\mathcal{A} \backslash H}(x)-\chi_{\mathcal{A} / H}(x)$.

Recurrence Relationship for the Characteristic Polynomial

Definition

For a hyperplane $H \in \mathcal{A}$, denote $\mathcal{A} \backslash H$ the arrangement without the hyperplane H. Moreover, denote \mathcal{A} / H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in \mathcal{A}$.

Theorem
Let \mathcal{A} be an arrangement in K^{n} and H be a hyperplane of \mathcal{A}. Then, $\chi_{\mathcal{A}}(x)=\chi_{\mathcal{A} \backslash H}(x)-\chi_{\mathcal{A} / H}(x)$.

- Use Whitney's theorem while considering if H is in B or not.

Recurrence Relationship for the Characteristic Polynomial

Definition

For a hyperplane $H \in \mathcal{A}$, denote $\mathcal{A} \backslash H$ the arrangement without the hyperplane H. Moreover, denote \mathcal{A} / H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in \mathcal{A}$.

Theorem
Let \mathcal{A} be an arrangement in K^{n} and H be a hyperplane of \mathcal{A}. Then, $\chi_{\mathcal{A}}(x)=\chi_{\mathcal{A} \backslash H}(x)-\chi_{\mathcal{A} / H}(x)$.

- Use Whitney's theorem while considering if H is in B or not.
- When H is not in B, we obtain $\chi_{\mathcal{A} \backslash H}(x)$.

Recurrence Relationship for the Characteristic Polynomial

Definition

For a hyperplane $H \in \mathcal{A}$, denote $\mathcal{A} \backslash H$ the arrangement without the hyperplane H. Moreover, denote \mathcal{A} / H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in \mathcal{A}$.

Theorem

Let \mathcal{A} be an arrangement in K^{n} and H be a hyperplane of \mathcal{A}. Then, $\chi_{\mathcal{A}}(x)=\chi_{\mathcal{A} \backslash H}(x)-\chi_{\mathcal{A} / H}(x)$.

- Use Whitney's theorem while considering if H is in B or not.
- When H is not in B, we obtain $\chi_{\mathcal{A} \backslash H}(x)$.
- When H is in B, we obtain $(-1) \cdot \chi_{\mathcal{A} / H}(x)$.

Regions and Zaslavsky's Theorem

Definition

For an arrangement \mathcal{A} in \mathbb{R}^{n}, define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A}.

Regions and Zaslavsky's Theorem

Definition

For an arrangement \mathcal{A} in \mathbb{R}^{n}, define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A}.

Theorem (Zaslavsky)

$$
\begin{gathered}
r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1), \\
b(\mathcal{A})=(-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1)
\end{gathered}
$$

Regions and Zaslavsky's Theorem

Definition

For an arrangement \mathcal{A} in \mathbb{R}^{n}, define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A}.

Theorem (Zaslavsky)

$$
\begin{gathered}
r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1), \\
b(\mathcal{A})=(-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1)
\end{gathered}
$$

- $(-1)^{n} r(A)$ and $(-1)^{\operatorname{rank}(\mathcal{A})} b(A)$ satisfy the same recurrence as $\chi_{\mathcal{A}}(x)$.

Regions and Zaslavsky's Theorem

Definition

For an arrangement \mathcal{A} in \mathbb{R}^{n}, define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^{n}-\bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A}.

Theorem (Zaslavsky)

$$
\begin{gathered}
r(\mathcal{A})=(-1)^{n} \chi_{\mathcal{A}}(-1), \\
b(\mathcal{A})=(-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1)
\end{gathered}
$$

- $(-1)^{n} r(A)$ and $(-1)^{\operatorname{rank}(\mathcal{A})} b(A)$ satisfy the same recurrence as $\chi_{\mathcal{A}}(x)$.
- The equations holds when $\mathcal{A}=\emptyset$, and the result follows.

Finite Field Method

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q}.

Theorem
For an arrangement \mathcal{A} in \mathbb{R}^{n} defined over \mathbb{Q}, then for sufficiently large prime power q,

$$
\chi_{\mathcal{A}}(q)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}} H\right)
$$

Finite Field Method

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q}.

Theorem
For an arrangement \mathcal{A} in \mathbb{R}^{n} defined over \mathbb{Q}, then for sufficiently large prime power q,

$$
\chi_{\mathcal{A}}(q)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}} H\right)
$$

- \mathcal{A}_{q}, be the reduction of the hyperplanes modulo q. For a sufficiently large prime power $q, L\left(\mathcal{A}_{q}\right) \cong L(\mathcal{A})$

Finite Field Method

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q}.

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^{n} defined over \mathbb{Q}, then for sufficiently large prime power q,

$$
\chi_{\mathcal{A}}(q)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}} H\right)
$$

- \mathcal{A}_{q}, be the reduction of the hyperplanes modulo q. For a sufficiently large prime power $q, L\left(\mathcal{A}_{q}\right) \cong L(\mathcal{A})$
- For any $t \in L\left(\mathcal{A}_{q}\right)$ define $f(t)=\# t=q^{\operatorname{dim}(t)}$, $g(t)=\#\left(t-\bigcup_{u>t} u\right)$, and apply the Möbius Inversion Formula

Finite Field Method

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q}.

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^{n} defined over \mathbb{Q}, then for sufficiently large prime power q,

$$
\chi_{\mathcal{A}}(q)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}} H\right)
$$

- \mathcal{A}_{q}, be the reduction of the hyperplanes modulo q. For a sufficiently large prime power $q, L\left(\mathcal{A}_{q}\right) \cong L(\mathcal{A})$
- For any $t \in L\left(\mathcal{A}_{q}\right)$ define $f(t)=\# t=q^{\operatorname{dim}(t)}$, $g(t)=\#\left(t-\bigcup_{u>t} u\right)$, and apply the Möbius Inversion Formula
- Since $f(t)=\sum_{u \geq t} g(u)$, then $g(t)=\sum_{u \geq t} \mu(t, u) q^{\operatorname{dim}(u)}$.

Finite Field Method

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q}.

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^{n} defined over \mathbb{Q}, then for sufficiently large prime power q,

$$
\chi_{\mathcal{A}}(q)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}} H\right)
$$

- \mathcal{A}_{q}, be the reduction of the hyperplanes modulo q. For a sufficiently large prime power $q, L\left(\mathcal{A}_{q}\right) \cong L(\mathcal{A})$
- For any $t \in L\left(\mathcal{A}_{q}\right)$ define $f(t)=\# t=q^{\operatorname{dim}(t)}$, $g(t)=\#\left(t-\bigcup_{u>t} u\right)$, and apply the Möbius Inversion Formula
- Since $f(t)=\sum_{u \geq t} g(u)$, then $g(t)=\sum_{u \geq t} \mu(t, u) q^{\operatorname{dim}(u)}$.
- So, $\chi_{\mathcal{A}}(q)=g\left(\mathbb{F}_{q}^{n}\right)=\#\left(\mathbb{F}_{q}^{n}-\bigcup_{H \in \mathcal{A}} H\right)$.

Interesting Arrangements in \mathbb{R}^{n}

- Braid Arrangement: $x_{i}-x_{j}=0$ and

$$
\chi_{\mathcal{A}}(x)=x(x-1)(x-2) \cdots(x-n+1) .
$$

Interesting Arrangements in \mathbb{R}^{n}

- Braid Arrangement: $x_{i}-x_{j}=0$ and

$$
\chi_{\mathcal{A}}(x)=x(x-1)(x-2) \cdots(x-n+1) .
$$

- Shi Arrangement: $x_{i}-x_{j}=0,1$ and

$$
\chi_{\mathcal{A}}(x)=x(x-n)^{n-1}
$$

Interesting Arrangements in \mathbb{R}^{n}

- Braid Arrangement: $x_{i}-x_{j}=0$ and

$$
\chi_{\mathcal{A}}(x)=x(x-1)(x-2) \cdots(x-n+1) .
$$

- Shi Arrangement: $x_{i}-x_{j}=0,1$ and

$$
\chi_{\mathcal{A}}(x)=x(x-n)^{n-1} .
$$

- Catalan Arrangement: $x_{i}-x_{j}=-1,0,1$ and

$$
\chi_{\mathcal{A}}(x)=x(x-n-1)(x-n-2) \cdots(x-2 n-1)
$$

Interesting Arrangements in \mathbb{R}^{n}

- Braid Arrangement: $x_{i}-x_{j}=0$ and

$$
\chi_{\mathcal{A}}(x)=x(x-1)(x-2) \cdots(x-n+1) .
$$

- Shi Arrangement: $x_{i}-x_{j}=0,1$ and

$$
\chi_{\mathcal{A}}(x)=x(x-n)^{n-1} .
$$

- Catalan Arrangement: $x_{i}-x_{j}=-1,0,1$ and

$$
\chi_{\mathcal{A}}(x)=x(x-n-1)(x-n-2) \cdots(x-2 n-1)
$$

- Linial Arrangement: $x_{i}-x_{j}=1$ and

$$
\chi_{\mathcal{A}}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}(x-k)^{n-1}
$$

Areas for Continued Study

- Graph theoretic problems

Areas for Continued Study

- Graph theoretic problems
- Simplicial arrangements

Areas for Continued Study

- Graph theoretic problems
- Simplicial arrangements
- Different classes of posets

Areas for Continued Study

- Graph theoretic problems
- Simplicial arrangements
- Different classes of posets
- Permutation enumeration

Acknowledgements

We would like to thank:

Acknowledgements

We would like to thank:

- Our mentor, Zhulin Li

Acknowledgements

We would like to thank:

- Our mentor, Zhulin Li
- Dr. Gerovitch and the MIT PRIMES program

Acknowledgements

We would like to thank:

- Our mentor, Zhulin Li
- Dr. Gerovitch and the MIT PRIMES program
- Our parents

