Hyperplane Arrangements Intersection Posets, Characteristic Polynomials, and Regions

Ashley Chen Allen Wang

December 2017

Ashley Chen, Allen Wang

Hyperplane Arrangements

December 2017 1 / 12

< ロ > < 同 > < 三 > < 三

Motivating Questions

Example

If *n* points are selected from a circle, and all $\binom{n}{2}$ lines joining pairs of the *n* points are drawn, then what is the maximum number of regions created in the circle?

Example

What is the maximum number of "regions" determined by *n* hyperplanes with dimension d-1 in \mathbb{R}^d ?

Motivating Questions

Example

If *n* points are selected from a circle, and all $\binom{n}{2}$ lines joining pairs of the *n* points are drawn, then what is the maximum number of regions created in the circle?

The maximum, $\binom{n}{4} + \binom{n}{2} + \binom{n}{0}$, is achieved when no three lines intersect at a point (general position).

Example

What is the maximum number of "regions" determined by *n* hyperplanes with dimension d-1 in \mathbb{R}^d ?

The maximum, $\sum_{k=0}^{d} \binom{n}{k}$, is achieved when the hyperplanes are taken in general position.

イロト (過) (ヨ) (ヨ) (ヨ) ヨー ののの

Preliminary Definitions

Definition

For a field K, define an n-1 dimensional affine hyperplane of K^n as the affine subspace $\{v \in K^n : a \cdot v = b\}$.

(日) (同) (三) (三)

Preliminary Definitions

Definition

For a field K, define an n-1 dimensional affine hyperplane of K^n as the affine subspace $\{v \in K^n : a \cdot v = b\}$.

Definition

A finite hyperplane arrangement is a finite set A of n-1 dimensional affine hyperplanes in a finite dimensional vector space K^n .

Preliminary Definitions

Definition

For a field K, define an n-1 dimensional affine hyperplane of K^n as the affine subspace $\{v \in K^n : a \cdot v = b\}$.

Definition

A finite hyperplane arrangement is a finite set A of n-1 dimensional affine hyperplanes in a finite dimensional vector space K^n .

Definition

The dimension of an arrangement \mathcal{A} in \mathcal{K}^n denoted dim (\mathcal{A}) is the integer n. The rank of the arrangement denoted rank (\mathcal{A}) is the dimension of the space spanned by the normals to the hyperplanes.

(日) (同) (三) (三)

The Intersection Poset and Characteristic Polynomial

Definition

Define the intersection poset of an arragement \mathcal{A} in $V = K^n$, denoted $L(\mathcal{A})$, as the set of all non-empty intersections of sets of hyperplanes $B \in \mathcal{A}$ ordered by reverse inclusion.

The Intersection Poset and Characteristic Polynomial

Definition

Define the intersection poset of an arragement \mathcal{A} in $V = K^n$, denoted $L(\mathcal{A})$, as the set of all non-empty intersections of sets of hyperplanes $B \in \mathcal{A}$ ordered by reverse inclusion.

Definition

Define the characteristic polynomial of an arrangement ${\cal A}$ as

$$\chi_{\mathcal{A}}(x) = \sum_{s \in L(\mathcal{A})} \mu(V, s) x^{\dim(s)}.$$

Theorem

For a finite lattice L and some $X \subseteq L \setminus \hat{0}$ such that $\forall s \in L \setminus \hat{0}$, $\exists t \in X$ such that $s \ge t$, then

$$\mu(\hat{\mathbf{0}},\hat{\mathbf{1}})=\sum_{k}(-1)^{k}N_{k},$$

where N_k is the number of k-subsets of X whose join is $\hat{1}$.

Theorem

For a finite lattice L and some $X \subseteq L \setminus \hat{0}$ such that $\forall s \in L \setminus \hat{0}$, $\exists t \in X$ such that $s \ge t$, then

$$\mu(\hat{0},\hat{1})=\sum_{k}(-1)^{k}N_{k},$$

where N_k is the number of k-subsets of X whose join is $\hat{1}$.

 Let A(L, K) be the Möbius algebra of L over a field K with bilinear multiplication s ⋅ t = s ∨ t, defined by the join.

Theorem

For a finite lattice L and some $X \subseteq L \setminus \hat{0}$ such that $\forall s \in L \setminus \hat{0}$, $\exists t \in X$ such that $s \ge t$, then

$$\mu(\hat{\mathbf{0}},\hat{\mathbf{1}})=\sum_{k}(-1)^{k}N_{k},$$

where N_k is the number of k-subsets of X whose join is $\hat{1}$.

- Let A(L, K) be the Möbius algebra of L over a field K with bilinear multiplication s ⋅ t = s ∨ t, defined by the join.
- Use the isomorphism from A(L, K) to $K^{\#L} = \bigoplus_{t \in L} K_t$.

Theorem

For a finite lattice L and some $X \subseteq L \setminus \hat{0}$ such that $\forall s \in L \setminus \hat{0}$, $\exists t \in X$ such that $s \ge t$, then

$$\mu(\hat{\mathbf{0}},\hat{\mathbf{1}})=\sum_{k}(-1)^{k}N_{k},$$

where N_k is the number of k-subsets of X whose join is $\hat{1}$.

- Let A(L, K) be the Möbius algebra of L over a field K with bilinear multiplication s ⋅ t = s ∨ t, defined by the join.
- Use the isomorphism from A(L, K) to $K^{\#L} = \bigoplus_{t \in L} K_t$.
- $\sum_{s\leq t}\mu(s,t)t=\delta_s o\delta_s'$ where δ_s' is the identity of ${\cal K}_s$

Theorem

For a finite lattice L and some $X \subseteq L \setminus \hat{0}$ such that $\forall s \in L \setminus \hat{0}$, $\exists t \in X$ such that $s \ge t$, then

$$\mu(\hat{\mathbf{0}},\hat{\mathbf{1}})=\sum_{k}(-1)^{k}N_{k},$$

where N_k is the number of k-subsets of X whose join is $\hat{1}$.

- Let A(L, K) be the Möbius algebra of L over a field K with bilinear multiplication s ⋅ t = s ∨ t, defined by the join.
- Use the isomorphism from A(L, K) to $K^{\#L} = \bigoplus_{t \in L} K_t$.
- $\sum_{s\leq t}\mu(s,t)t=\delta_s o\delta_s'$ where δ_s' is the identity of ${\cal K}_s$
- Then, $\prod_{t\in X} (\hat{0}-t) = \sum_{s} \mu(\hat{0},s)s$, and consider the coefficient of $\hat{1}$.

< < p>< < p>

Theorem (Whitney)

For arrangement A in K^n , then

$$\chi_{\mathcal{A}}(x) = \sum_{B \subseteq \mathcal{A}} (-1)^{\#B} x^{n-\operatorname{rank}(B)},$$

where the sum is taken over all sets of hyperplanes B of A with a nonempty intersection.

(日) (同) (三) (三)

Theorem (Whitney)

For arrangement A in K^n , then

$$\chi_{\mathcal{A}}(x) = \sum_{B \subseteq \mathcal{A}} (-1)^{\#B} x^{n-\operatorname{rank}(B)},$$

where the sum is taken over all sets of hyperplanes B of A with a nonempty intersection.

• For any element $t \in L(A)$, $[K^n, t]$ is a lattice.

(日) (同) (三) (三)

Theorem (Whitney)

For arrangement \mathcal{A} in K^n , then

$$\chi_{\mathcal{A}}(x) = \sum_{B \subseteq \mathcal{A}} (-1)^{\#B} x^{n-\operatorname{rank}(B)},$$

where the sum is taken over all sets of hyperplanes B of A with a nonempty intersection.

- For any element $t \in L(A)$, $[K^n, t]$ is a lattice.
- Apply the crosscut theorem to $[K^n, t]$ with X = B, the set of hyperplanes in A that contain t.

< □ > < 同 > < 三 > < 三

Theorem (Whitney)

For arrangement \mathcal{A} in K^n , then

$$\chi_{\mathcal{A}}(x) = \sum_{B \subseteq \mathcal{A}} (-1)^{\#B} x^{n-\operatorname{rank}(B)},$$

where the sum is taken over all sets of hyperplanes B of A with a nonempty intersection.

- For any element $t \in L(A)$, $[K^n, t]$ is a lattice.
- Apply the crosscut theorem to $[K^n, t]$ with X = B, the set of hyperplanes in A that contain t.
- Since dim(t) = n rank(B), summing over all t gives the theorem.

(日) (同) (三) (三)

Definition

For a hyperplane $H \in A$, denote $A \setminus H$ the arrangement without the hyperplane H. Moreover, denote A/H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in A$.

Definition

For a hyperplane $H \in A$, denote $A \setminus H$ the arrangement without the hyperplane H. Moreover, denote A/H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in A$.

Theorem

Let \mathcal{A} be an arrangement in K^n and H be a hyperplane of \mathcal{A} . Then, $\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A} \setminus H}(x) - \chi_{\mathcal{A}/H}(x).$

Definition

For a hyperplane $H \in A$, denote $A \setminus H$ the arrangement without the hyperplane H. Moreover, denote A/H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in A$.

Theorem

Let \mathcal{A} be an arrangement in K^n and H be a hyperplane of \mathcal{A} . Then, $\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A} \setminus H}(x) - \chi_{\mathcal{A}/H}(x).$

• Use Whitney's theorem while considering if H is in B or not.

Definition

For a hyperplane $H \in A$, denote $A \setminus H$ the arrangement without the hyperplane H. Moreover, denote A/H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in A$.

Theorem

Let \mathcal{A} be an arrangement in K^n and H be a hyperplane of \mathcal{A} . Then, $\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A} \setminus H}(x) - \chi_{\mathcal{A}/H}(x).$

- Use Whitney's theorem while considering if H is in B or not.
- When H is not in B, we obtain $\chi_{A \setminus H}(x)$.

<ロト </p>

Definition

For a hyperplane $H \in A$, denote $A \setminus H$ the arrangement without the hyperplane H. Moreover, denote A/H the arrangement of nonempty $H \cap J$ in the affine space H for $J \in A$.

Theorem

Let \mathcal{A} be an arrangement in K^n and H be a hyperplane of \mathcal{A} . Then, $\chi_{\mathcal{A}}(x) = \chi_{\mathcal{A} \setminus H}(x) - \chi_{\mathcal{A}/H}(x).$

- Use Whitney's theorem while considering if H is in B or not.
- When *H* is not in *B*, we obtain $\chi_{A \setminus H}(x)$.
- When H is in B, we obtain $(-1) \cdot \chi_{\mathcal{A}/H}(x)$.

(日) (同) (三) (三)

Definition

For an arrangement \mathcal{A} in \mathbb{R}^n , define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A} .

(日) (同) (三) (三)

Definition

For an arrangement \mathcal{A} in \mathbb{R}^n , define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A} .

Theorem (Zaslavsky)

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1),$$

$$b(\mathcal{A}) = (-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1).$$

Definition

For an arrangement \mathcal{A} in \mathbb{R}^n , define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A} .

Theorem (Zaslavsky)

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1),$$

$$b(\mathcal{A}) = (-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1).$$

• $(-1)^n r(A)$ and $(-1)^{\operatorname{rank}(\mathcal{A})} b(A)$ satisfy the same recurrence as $\chi_{\mathcal{A}}(x)$.

イロト 人間ト イヨト イヨト

Definition

For an arrangement \mathcal{A} in \mathbb{R}^n , define the number of regions, denoted $r(\mathcal{A})$, to be the number of connected components of $\mathbb{R}^n - \bigcup_{H \in \mathcal{A}} H$. Similarly, define $b(\mathcal{A})$ as the number of relatively bounded regions of \mathcal{A} .

Theorem (Zaslavsky)

$$r(\mathcal{A}) = (-1)^n \chi_{\mathcal{A}}(-1),$$

$$b(\mathcal{A}) = (-1)^{\operatorname{rank}(\mathcal{A})} \chi_{\mathcal{A}}(1).$$

• $(-1)^n r(A)$ and $(-1)^{\operatorname{rank}(\mathcal{A})} b(A)$ satisfy the same recurrence as $\chi_{\mathcal{A}}(x)$.

• The equations holds when $\mathcal{A} = \emptyset$, and the result follows.

イロト イポト イヨト イヨト 二日

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q} .

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^n defined over \mathbb{Q} , then for sufficiently large prime power q,

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}} H \right).$$

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q} .

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^n defined over \mathbb{Q} , then for sufficiently large prime power q,

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}} H \right).$$

• \mathcal{A}_q , be the reduction of the hyperplanes modulo q. For a sufficiently large prime power q, $L(\mathcal{A}_q) \cong L(\mathcal{A})$

イロト 人間ト イヨト イヨト

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q} .

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^n defined over \mathbb{Q} , then for sufficiently large prime power q,

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}} H \right).$$

- \mathcal{A}_q , be the reduction of the hyperplanes modulo q. For a sufficiently large prime power q, $L(\mathcal{A}_q) \cong L(\mathcal{A})$
- For any $t \in L(A_q)$ define $f(t) = \#t = q^{\dim(t)}$, $g(t) = \#(t - \bigcup_{u>t} u)$, and apply the Möbius Inversion Formula

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q} .

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^n defined over \mathbb{Q} , then for sufficiently large prime power q,

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}} H \right).$$

- \mathcal{A}_q , be the reduction of the hyperplanes modulo q. For a sufficiently large prime power q, $L(\mathcal{A}_q) \cong L(\mathcal{A})$
- For any $t \in L(\mathcal{A}_q)$ define $f(t) = \#t = q^{\dim(t)}$, $g(t) = \#(t - \bigcup_{u > t} u)$, and apply the Möbius Inversion Formula
- Since $f(t) = \sum_{u \ge t} g(u)$, then $g(t) = \sum_{u \ge t} \mu(t, u) q^{\dim(u)}$.

イロト 不得 トイヨト イヨト 二日

A useful method for computing the characteristic polynomial when the hyperplanes are defined over \mathbb{Q} .

Theorem

For an arrangement \mathcal{A} in \mathbb{R}^n defined over \mathbb{Q} , then for sufficiently large prime power q,

$$\chi_{\mathcal{A}}(q) = \# \left(\mathbb{F}_q^n - \bigcup_{H \in \mathcal{A}} H \right).$$

- \mathcal{A}_q , be the reduction of the hyperplanes modulo q. For a sufficiently large prime power q, $L(\mathcal{A}_q) \cong L(\mathcal{A})$
- For any t ∈ L(A_q) define f(t) = #t = q^{dim(t)}, g(t) = # (t - ∪_{u>t} u), and apply the Möbius Inversion Formula
 Since f(t) = ∑_{u≥t} g(u), then g(t) = ∑_{u≥t} μ(t, u)q^{dim(u)}.
 So, χ_A(q) = g(𝔽ⁿ_q) = # (𝔽ⁿ_q - ∪_{H∈A} H).

• Braid Arrangement: $x_i - x_j = 0$ and

$$\chi_{\mathcal{A}}(x) = x(x-1)(x-2)\cdots(x-n+1).$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Braid Arrangement:
$$x_i - x_j = 0$$
 and
 $\chi_{\mathcal{A}}(x) = x(x-1)(x-2)\cdots(x-n+1).$

• Shi Arrangement:
$$x_i - x_j = 0, 1$$
 and
 $\chi_{\mathcal{A}}(x) = x(x - n)^{n-1}.$

(日) (四) (三) (三) (三)

• Braid Arrangement:
$$x_i - x_j = 0$$
 and
 $\chi_{\mathcal{A}}(x) = x(x-1)(x-2)\cdots(x-n+1).$

• Shi Arrangement:
$$x_i - x_j = 0, 1$$
 and
 $\chi_{\mathcal{A}}(x) = x(x - n)^{n-1}.$

• Catalan Arrangement:
$$x_i - x_j = -1, 0, 1$$
 and

$$\chi_{\mathcal{A}}(x) = x(x-n-1)(x-n-2)\cdots(x-2n-1).$$

(日) (四) (三) (三) (三)

• Braid Arrangement:
$$x_i - x_j = 0$$
 and
 $\chi_{\mathcal{A}}(x) = x(x-1)(x-2)\cdots(x-n+1).$

• Shi Arrangement:
$$x_i - x_j = 0, 1$$
 and
 $\chi_{\mathcal{A}}(x) = x(x - n)^{n-1}.$

• Catalan Arrangement:
$$x_i - x_j = -1, 0, 1$$
 and
 $\chi_{\mathcal{A}}(x) = x(x - n - 1)(x - n - 2) \cdots (x - 2n - 2)$

• Linial Arrangement: $x_i - x_j = 1$ and

$$\chi_{\mathcal{A}}(x) = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} (x-k)^{n-1}$$

Ashley Chen, Allen Wang

- 32

1).

• Graph theoretic problems

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Graph theoretic problems
- Simplicial arrangements

3

-

• • • • • • • • • • • •

- Graph theoretic problems
- Simplicial arrangements
- Different classes of posets

3

Image: A match a ma

- Graph theoretic problems
- Simplicial arrangements
- Different classes of posets
- Permutation enumeration

3.5

Image: A matrix and a matrix

We would like to thank:

3

<ロ> (日) (日) (日) (日) (日)

We would like to thank:

• Our mentor, Zhulin Li

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

We would like to thank:

- Our mentor, Zhulin Li
- Dr. Gerovitch and the MIT PRIMES program

3

We would like to thank:

- Our mentor, Zhulin Li
- Dr. Gerovitch and the MIT PRIMES program
- Our parents

3

• • • • • • • • • • • •