
Towards Append-Only
Authenticated Dictionaries

Vivek Bhupatiraju, CS-PRIMES 2017

Public-key Cryptography

PK

SK

M e(M , PK)

Secure Channels
- Having secure channels is becoming more and more

necessary
- Many of these systems based around public-key

cryptography
- Essential to accurately distribute and access these

public-keys
- Let’s use a directory!

John
PKJ + SKJ

Directory

Robert

John publishes his
public key, PKJDirectory stores PKJ

under John’s name

Directory sends
Robert PKJ

MSR

1

Robert encrypts
MSR with PKJ

John decrypts
with SKJ => MSR

e(MSR , PKJ)

2

3

4 5

John
PKJ + SKJ

Directory

Robert

John publishes his
public key, PKJDirectory stores PKM

under John’s name,
sends PKJ to Mark

Directory sends
Robert PKM

MSR

1

Robert encrypts
MSR with PKM

John decrypts
with SKJ => MSR

e(MSR , PKM)

2

3

4 6

Mark
e(MSR , PKJ)

Mark now knows
MSR - no secrecy

5

Detecting Impersonation!

Directory

John
PKJ + SKJ

John = PK
J

Alin = PK
A

 .
 .
 .
 .
 .

Needs to check that
directory is not hiding a

PKM under his name

1

Sends cryptographic proof
that this IS the case

2

(NON-MEMBERSHIP)

Detecting Impersonation!

Directory

John
PKJ + SKJ

John =
Alin = PK

A
 .
 .
 .
 .
 .

Needs to check that
directory is not hiding a

PKM under his name

1

Sends cryptographic proof
that this IS the case

2

(CONSISTENCY)

PK
M

PK
J

Detecting Impersonation!

Directory

John = PK
J

Alin = PK
A

 .
 .
 .
 .
 .

(MEMBERSHIP)

Robert
MSR

Sends Robert PKM when
he asks for John’s PK

1

Asks for proof that PKM is
in the directory under

John’s name

2

Append-Only Dictionaries
- NON-MEMBERSHIP

- Proof that no values exist for key n
other than the ones in the tree

- CONSISTENCY
- Proof that all data in version i of

the dictionary is also in version j of
the dictionary, where i ≤ j

- MEMBERSHIP
- Proof that (n, v

n
) is in dictionary

(Key-value pairs)

Attempts at a Full AAD

Membership Non-membership Consistency

History Tree

Prefix Tree

Quadratic Prefix
Forest

 == number of key-value pairs in AAD / Server

Merkle Tree

A = (a, va)

H(A) H(B) H(C) H(D)

H(H(A) | H(B)) = L H(H(C) | H(D)) = R

H(L + R) = Ω
(Merkle Root)

B = (b, vb) C = (c, vc) D = (d, vd)

History Tree
- Just a merkle tree that grows as key-value pairs are

added to it

(a, va) (b, vb)

(a, va) (b, vb) (c, vc) (a, va) (b, vb) (c, vc) (d, vd)

=?

(a, va)

History Tree (MEMBERSHIP)

Ωc Merkle Root: Ωo

Space/Time
Complexity

(b, vb) (c, vc) (d, vd)

History Tree (NON-MEMBERSHIP)

(j, vj)

Space/Time
Complexity

(a, va) (j, vj’) (k, vk)

History Tree (CONSISTENCY)

(a, va) (b, vb) (a, va) (b, vb) (c, vc) (d, vd)

Space/Time Complexity:

version i version j

Prefix Tree
Tree defined by hashes:

0

0

1

10

0 1

ab

ac

bd

HASH(‘a’) = 1100...

HASH(‘b’) = 0011...

HASH(‘c’) = 1010...

HASH(‘d’) = 0001...

Also a merkle tree!

- Each node is a hash of
its children

0

0

1

10

0 1

(d, vd)

∅

Prefix Tree (MEMBERSHIP)

Space/Time
Complexity

(b, vb)

(c, vc) (a, va)

0

0

1

10

0 1

(d, vd)

∅

Prefix Tree (NON-MEMBERSHIP)

Space/Time
Complexity

(b, vb)

(c, vc) (a, va)

HASH(‘e’) = 0011...

Prefix Tree (CONSISTENCY)
- Server has to send all key-value pairs added between

versions OR membership proofs
- Both linear in complexity, O(m)

Quadratic Prefix Forest

0

0

1

10

0 1 a’c

bd

1

a
tree of size n2

U1 of
Forest,
Size 1

U2 of
Forest,
Size 4

Un of
Forest,
Size n2

Quadratic Prefix Forest
- Say there are trees in the forest

- If there are total key-value pairs

Q. Prefix Forests (MEMBERSHIP)

0

0

1

10

0 1

d

1

a
tree of
size n2

b

c a’

Space / Time Complexity:

of Trees:

Q. Prefix Forests (NON-MEMBERSHIP)

0

0

1

10

0 1

d

1

a
tree of
size n2

b

c a’

Space / Time Complexity:

of Trees:

Q. Prefix Forests (CONSISTENCY)
- Keep each of the Merkle roots of each prefix tree in a

larger history tree
- Merkle roots of each prefix tree should never change
- Can check (via membership proofs) the roots of the

prefix tree against those stored in the history tree
- Space/time complexity of

Q. Prefix Forests (USABILITY)
- Each tree’s size is a square number
- At m = 1,000,000

- Next tree will need ~10,000 new key-value pairs
- Sacrificing usability for better complexities in other

operations

Future Work
- Algebraic Hashing

- H(a, b) = L * a + R * b
- Bilinear Accumulators

- Accumulating sets into small digests
- Incorporating NON-MEMBERSHIP into history

trees
- Coding up trees to test viability
- Exploring new data structures

Acknowledgements
I would like to thank:

- Alin Tomescu, my mentor
- Srini Devadas, coordinator of CS-PRIMES
- My parents and family
- MIT-PRIMES program

Thank you!
Ask me questions!

