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Secure Channels
- Having secure channels is becoming more and more 

necessary
- Many of these systems based around public-key 

cryptography
- Essential to accurately distribute and access these 

public-keys
- Let’s use a directory!
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Detecting Impersonation!
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Append-Only Dictionaries
- NON-MEMBERSHIP

- Proof that no values exist for key n 
other than the ones in the tree

- CONSISTENCY
- Proof that all data in version i of 

the dictionary is also in version j of 
the dictionary, where i ≤ j

- MEMBERSHIP
- Proof that (n, v

n
) is in dictionary

(Key-value pairs)



Attempts at a Full AAD

Membership Non-membership Consistency

History Tree

Prefix Tree

Quadratic Prefix 
Forest

       ==  number of key-value pairs in AAD / Server



Merkle Tree

A = (a, va)

H(A) H(B) H(C) H(D)

H(H(A) | H(B)) = L H(H(C) | H(D)) = R

H(L + R) = Ω 
(Merkle Root)

B = (b, vb) C = (c, vc) D = (d, vd)



History Tree
- Just a merkle tree that grows as key-value pairs are 

added to it

(a, va) (b, vb)

(a, va) (b, vb) (c, vc) (a, va) (b, vb) (c, vc) (d, vd)
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History Tree (NON-MEMBERSHIP)

(j, vj)
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History Tree (CONSISTENCY)

(a, va) (b, vb) (a, va) (b, vb) (c, vc) (d, vd)

Space/Time Complexity: 

version i version j



Prefix Tree
Tree defined by hashes:
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HASH(‘a’) = 1100...

HASH(‘b’) = 0011...

HASH(‘c’) = 1010...

HASH(‘d’) = 0001...

Also a merkle tree!

- Each node is a hash of 
its children



0

0

1

10

0 1

(d, vd)

∅

Prefix Tree (MEMBERSHIP)

Space/Time 
Complexity 

(b, vb)

(c, vc) (a, va)



0

0

1

10

0 1

(d, vd)

∅
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HASH(‘e’) = 0011...



Prefix Tree (CONSISTENCY)
- Server has to send all key-value pairs added between 

versions OR membership proofs
- Both linear in complexity, O(m)



Quadratic Prefix Forest
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Quadratic Prefix Forest
- Say there are       trees in the forest             

- If there are         total key-value pairs           



Q. Prefix Forests (MEMBERSHIP)

0

0

1

10

0 1

d

1

a
tree of 
size n2

b

c a’

Space / Time Complexity:

# of Trees:                    



Q. Prefix Forests (NON-MEMBERSHIP)
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Q. Prefix Forests (CONSISTENCY)
- Keep each of the Merkle roots of each prefix tree in a 

larger history tree
- Merkle roots of each prefix tree should never change
- Can check (via membership proofs) the roots of the 

prefix tree against those stored in the history tree
- Space/time complexity of 



Q. Prefix Forests (USABILITY)
- Each tree’s size is a square number
- At m = 1,000,000

- Next tree will need ~10,000 new key-value pairs
- Sacrificing usability for better complexities in other 

operations



Future Work
- Algebraic Hashing

- H(a, b) = L * a + R * b
- Bilinear Accumulators

- Accumulating sets into small digests
- Incorporating NON-MEMBERSHIP into history 

trees
- Coding up trees to test viability
- Exploring new data structures
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Thank you!
Ask me questions!


