Random walks on a Grid with a Periodic Boundary Condition

Peter Rowley
Mentor Boya Song

PRIMES Conference May 20, 2017

Periodic Boundary Condition

- Boundaries wrap to the other side
- Equivalent to a torus

(b) $\mathrm{A} \mathbb{Z}_{N} \times \mathbb{Z}_{N}$ torus
(a) An $N \times N$ grid

Figure: Two ways of viewing the grid

Random Walk

- Simple symmetric random walk: starting anywhere, at every step there is a 25% chance of moving in each direction (up, down, left, right)

Markov Chains

- A set of discrete states with probabilities to move between
- Irreducible if it is possible to get from any state to any other
- Can be modelled by a transition matrix
- Columns add to 1
- Element in ith row and j th column is probability of transition from j th state to i th state
- Regular if some power has all positive entries

$$
T=\left[\begin{array}{ll}
0.3 & 0.4 \\
0.7 & 0.6
\end{array}\right]
$$

Figure: A Markov process and its transition matrix

3 by 3 Transition Matrix

Figure: Transition matrix for random walk on 3×3 grid

Steady State Distribution

Definition

Steady State Distribution: A probability distribution of a Markov chain which stays constant when the transition matrix is applied

- Due to symmetry and reversibility of this random walk, the steady state distribution is all equal probabilities of $\frac{1}{n^{2}}$

The Even Case

- Grid can be colored black and white so that it always goes from black to white
- Graph of states is bipartite
- Probability distribution does not approach a steady state vector
- We focus on the odd case

Eigenvalues

- It is known that all regular transition matrices have one eigenvalue of 1 and the rest satisfy $|\lambda|<1$
- For small cases, we look at the number of distinct eigenvalues:
- 3 by 3 has 3
- 5 by 5 has 6
- 7 by 7 has 10
- 9 by 9 has 15
- We conjecture that for an odd $(2 n+1) \times(2 n+1)$ grid there are $\binom{n+2}{2}$ distinct eigenvalues

Viewing as a Product Chain

- Coordinates start with $(1,1)$ in top left, with (i, j) being i th row and j th column
- Can be seen as two separate random walks, one for each coordinate
- Each step randomly chooses one of the walks to increment
- Allows us to use results from random walk on a loop

Eigenvalues for Each Loop

- It is known that all distinct eigenvalues of a loop of length $2 n+1$ are of the form $\cos \left(\frac{2 \pi}{2 n+1} k\right)$ for $0 \leq k \leq n$

Combining the Eigenvalues

- In a product chain of d chains, if P is a probability distribution over the set of chains, and λ_{i} is any eigenvalue of the i th process, then

$$
\sum_{i=1}^{d} P_{i} \lambda_{i}
$$

is an eigenvalue of the product chain.

- Any λ_{i}, λ_{j} from have $\frac{\lambda_{i}+\lambda_{j}}{2}$ as an eigenvalue of the 2-D walk
- This gives $\binom{n+2}{2}$ distinct values

Removing a Point

- One point is removed
- Impossible to move to or from that point

Transition Matrix

Time to Affect

- Probability not affected for states not near the removed point at first
- Comparing the probabilities of being at any given point after a certain amount of time
- Only affected once the path can have traveled to a point adjacent to the removed point

Future Research

- Consider eigenvalues of the even case
- Consider eigenvalues of the point-removed case
- Look into the expected hitting times with and without a point removed

Acknowledgements

- My mentor Boya Song
- Professor Jörn Dunkel
- MIT Math Department
- MIT PRIMES
- Dr. Tanya Khovanova
- Dr. Slava Gerovitch
- My parents

