Folding, Jamming, and Random Walks

August Chen
Mentor: Prof. Jayadev Athreya, University of Washington

Seventh Annual MIT Primes Conference May 20, 2017

Motivation and Background

- Jammed circular billiard balls in space.
- All same size, all same mass, all externally tangent to adjacent balls.
- Suppose total kinetic energy is constant.

Considering Collisions

- Suppose balls $1,2, \ldots, n$.
- Pick pair of balls $(i, j), 1 \leq i \leq j \leq n$.
- If balls i, j not touching, don't do anything.
- If balls i, j tangent, consider velocity vectors $\overrightarrow{v_{i}}, \overrightarrow{v_{j}}$.

Result of Collisions

- Split $\overrightarrow{v_{i}}, \overrightarrow{v_{j}}$ into two vectors $\overrightarrow{b_{i}}, \overrightarrow{b_{j}}$ perpendicular to line / connecting circle centers and two vectors $\overrightarrow{a_{i}}, \overrightarrow{a_{j}}$ lying on I such that $\overrightarrow{a_{i}}+\overrightarrow{b_{i}}=\overrightarrow{v_{i}}, \overrightarrow{a_{j}}+\overrightarrow{b_{j}}=\overrightarrow{v_{j}}$.
- If $a_{i}>a_{j}$, exchange $\overrightarrow{a_{i}}$ and $\overrightarrow{a_{j}}$ between balls i, j.

Special Case

- All n balls collinear, with centers lying on line I.

- Consider components of vectors lying on / on the left pointing left or on the right pointing right, won't change end state. Example:

- Configuration of balls' velocity vectors lying on $/$:

Special Case End State

Theorem

Follow the previous notation using $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ as length of the k groups of right and left pointing vectors respectively on line I. Let $S_{y}=y_{1}+\cdots+y_{k}, S_{x}=x_{1}+\cdots+x_{k}$. No matter the order of moves made, the end state is the following:

The Folding Random Walk

- Jammed billard balls configuration motivates the following random walk, called Folding:
- Consider m hyperplanes in \mathbb{R}^{n} all passing through the origin.
- Assign + and - sign to different sides of all m hyperplanes.
- Start at some point P in \mathbb{R}^{n}. Choose one of the m hyperplanes at random.
- If P on + side of hyperplane, don't do anything.
- If P on - side of hyperplane, reflect P about the hyperplane.

No all pluses

- Cannot have a region on plus side of every hyperplane, else points in this region will always stay fixed under Folding.

Ho-Zimmerman

Exists $2\left[\binom{m-1}{0}+\binom{m-1}{1}+\cdots+\binom{m-1}{n-1}\right]$ regions formed by m distinct hyperplanes in \mathbb{R}^{n} all passing through origin.

Corollary

If no region on plus side of every hyperplane, then $m \geq n+1$. Also, if $m \geq n+1$, we can assign the + and - signs of the hyperplanes so that there does not exist a region that is on the plus side of every hyperplane.

Graph under Folding

- Consider the following directed graph: for all vertices v in the orbit of starting point P under Folding, draw directed edge from v to all vertices w that can be reached from v under one step of Folding.
- Exists self-loops.

Theorem

In two dimensions, the graph is bipartite.

Conjecture

In any dimension, the graph is bipartite.

Characterizing 2d Orbit

- We work in two dimensions.
- Without loss of generality, suppose one of the lines is the x-axis.
- Suppose that the starting point is unit distance from the origin.

Lemma

If two lines make an angle that is an irrational multiple of π with each other, then the orbit under Folding is dense in the unit circle.

Lemma

Suppose m lines all with angles that are rational multiples of π, say $\frac{p_{1}}{q_{1}} \pi, \ldots, \frac{p_{m}}{q_{m}} \pi$. There exists $\operatorname{Icm}\left(q_{1}, q_{2}, \cdots, q_{m}\right)$ points in orbit under Folding if the starting point can be written as a linear combination of $\frac{1}{q_{1}} \pi, \ldots, \frac{1}{q_{m}} \pi$ with integer coefficients and $2 \operatorname{Icm}\left(q_{1}, q_{2}, \cdots, q_{m}\right)$ otherwise.

Simplifying the random walk

- Consider the transition matrix of Folding in two dimensions, with the following conditions.
- Three lines I_{1}, I_{2}, l_{3} with angles $0<\frac{p}{q} \pi<\frac{r}{s} \pi \leq \frac{\pi}{2}$ respectively.
- Start at $\frac{1}{2 \operatorname{lcm}(q, s)} \pi$ on unit circle. Orbit is a regular $2 \mathrm{lcm}(q, s)$-gon.

Assignment of Pluses and Minuses

- Assign the plus and minus signs to the three lines as seen in the following example with three lines, the x axis, $\frac{1}{6} \pi$, and $\frac{1}{3} \pi$.

Adjacency Matrix

Adjacency Matrix

For convenience set $A=\frac{\operatorname{lcm}(q, s)}{q} \cdot p, B=\frac{\operatorname{lcm}(q, s)}{s} \cdot r, C=\operatorname{lcm}(q, s)$. Then given the previous conditions imposed, the adjacency matrix always takes the following form:

Example Adjacency Matrix

Examples

Consider angles $0, \frac{1}{4} \pi, \frac{1}{2} \pi$. Suppose we start Folding at point with angle $\frac{1}{8} \pi$ on unit circle.

$$
\left(\begin{array}{llllllll}
2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Stationary Measure, 0 mod 4

- Consider angles $0, \frac{1}{n} \pi, \frac{1}{2} \pi$ where n is $0(\bmod 4)$, starting at angle $\frac{1}{2 n} \pi$ on the unit circle.

$0 \bmod 4$

Suppose $n=2 k$. Stationary measure vector under Folding is the following, going in counterclockwise order starting from point making angle $\frac{1}{2 n} \pi$ with x-axis.

$$
\begin{aligned}
& \frac{1}{4\left(2^{k}+\frac{2^{k+1}-5}{3}\right)}\left(3,1,2^{2}, 2^{2}, \ldots, 2^{k-2}, 2^{k-2}, 2^{k}, 2^{k}, \ldots, 2^{4}, 2^{4}, 2^{2}, 2^{2}\right. \\
& \left.1,3,3 \cdot 2^{2}, 3 \cdot 2^{2}, \ldots, 3 \cdot 2^{k-2}, 3 \cdot 2^{k-2}, 2^{k-1}, 2^{k-1}, \ldots, 2^{3}, 2^{3}, 2,2\right)
\end{aligned}
$$

Stationary Measure, 2 mod 4

- Consider angles $0, \frac{1}{n} \pi, \frac{1}{2} \pi$ where n is $2(\bmod 4)$, starting at angle $\frac{1}{2 n} \pi$ on the unit circle.

$2 \bmod 4$

Suppose $n=4 j+2, j \geq 1$. Stationary measure vector under Folding is the following, going in counterclockwise order starting from point making angle $\frac{1}{2 n} \pi$ with x-axis.

$$
v=\left(2^{2 j+1}-1, \frac{\left(2^{2 j+2}-1\right) \cdot 2^{2 i}}{3}, \frac{\left(2^{2 j+2}-4\right) \cdot 2^{2 i}}{3}\right.
$$

for $i=0,1, \ldots, j-1$.

$$
\frac{2^{2 j+2 i+4}+3 \cdot 2^{2 j}-2^{2 i+4}}{3}, \frac{2^{2 j+2 i+4}-3 \cdot 2^{2 j}-2^{2 i+2}}{3}, \frac{2^{2 j+3}-2^{2 j}-4}{3}
$$

for $i=j-1, j-2, \ldots, 0$.

$$
\frac{2^{2 j}-1}{3}, 2^{2 j+2 i+2}-2^{2 j}-2^{2 i}, 2^{2 j+2 i+2}+2^{2 j}-2^{2 i+2}
$$

for $i=0,1, \ldots, j-1$.

$$
\left.\frac{\left(2^{2 j+2}-4\right) \cdot 2^{2 i+1}}{3}, \frac{\left(2^{2 j+2}-1\right) \cdot 2^{2 i+1}}{3}, \frac{2^{2 j+1}-2}{3}\right)
$$

for $i=0,1, \ldots, j-1$.

Example Stationary Measure

Examples

Consider angles $0, \frac{1}{6} \pi, \frac{1}{2} \pi$. Suppose we start Folding at point with angle $\frac{1}{12} \pi$ on unit circle. Vector is $\frac{1}{108}(7,5,4,20,16,8,1,11,16,8,10,2)$.

Future Research

- Find stationary measure for n odd, with angles $0, \frac{1}{n} \pi, \frac{1}{2} \pi$.
- First generalize stationary measure to $0, \frac{a}{n} \pi, \frac{1}{2} \pi$ where $0<a<n$. We have conjectures on the stationary measure in the case when $n \equiv 0$ $(\bmod 4)$, which depend on $n(\bmod 16)$.
- Use Matrix Tree Theorem to help generalize in general 2d case.
- Generalize to multiple dimensions, using hyperplanes that result from the jammed billiard ball configurations.
- Use ratio of two largest magnitude eigenvalues of adjacency matrix to find the amount of time it takes to reach stationary measure.
- Work on jammed ball configurations problem directly.

Acknowledgements

- Professor Jayadev Athreya of the University of Washington.
- Professor Krzysztof Burdzy of the University of Washington
- Dr. Tanya Khovanova.
- MIT PRIMES Program.
- MIT Math Department.
- My parents.

