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Matrices

Recall that an m × n matrix with entries in R (or C) is an array of
numbers with m rows and n columns.

Examples

Here are examples of 3× 2 and 4× 4 matrices:

 3 −2
e 1

−π
√

2




0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
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Eigenvalues

This is how we multiply a vector by a matrixa11 a12 a13
a21 a22 a23
a31 a32 a33

v1
v2
v3

 =

a11v1 + a12v2 + a13v3
a21v1 + a22v2 + a23v3
a31v1 + a32v2 + a33v3



Examples (
2 −1
3 4

)(
2
7

)
=

(
−3
34

)
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Eigenvalues

We say that λ ∈ C is an eigenvalue of a square matrix A if

Av = λv

for some vector v. It turns out that there are n eigenvalues (up to
multiplicity) of an n × n matrix A.

Examples −2 −4 2
−2 1 2
4 2 5

 2
−3
−1

 = 3

 2
−3
−1


so 3 is an eigenvalue of the original matrix.
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Spectral Theorem

Examples

Here is a symmetric matrix: 1 2 3
2 7 4
3 4 9



If a matrix is symmetric, then all of its eigenvalues are real. Generally, we
order the eigenvalues as follows:

λ1 ≤ λ2 ≤ · · · ≤ λn.
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Random Variables

Define a probability density p(x) to be a function

p : R→ R≥0

such that
∫
R p(x)dx = 1.
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Random Variables

A random variable X with values in R and density p(x) is a “random
number in R which can be sampled such that its frequency (histogram) as
the number of samples increase converge to p(x).”

More precisely,

Pr(a ≤ X ≤ b) =

∫ b

a
p(x)dx .
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Example: Gaussian Random Variable

A Gaussian Random Variable is one that has

p(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
.

Here is a sample of 10000 Gaussian random variables with µ = 0 and
σ = 1.
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Random Vectors

Define a joint probability density p(x) to be a function

p : Rn → R≥0

such that
∫
Rn p(x)dxn = 1.

A random vector is a vector in Rn that takes random values with joint
distribution p(x).
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Random Matrices

A random matrix is a matrix whose entries are random variables. Note
that the entries do not have to be independent.

We can now consider the eigenvalues of these matrices, etc.

Examples

PRIMES problem set problem M2!
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The Model

Xn =
1√
2


N (0, 2) χ(n−1)β
χ(n−1)β N (0, 2) χ(n−2)β

. . .
. . .

. . .

χ2β N (0, 2) χβ
χβ N (0, 2)

 .

It turns out that the eigenvalues have joint distribution

1

Zn

∏
1≤i<j≤n

(λi − λj)β
n∏

i=1

e−
λ2i
2 .

Motivation. This joint distribution turns out to have an electrostatic
interpretation.
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Interlacing

We say that two sequences {xi}ni=1, {yj}n−1j=1 interlace if

x1 ≥ y1 ≥ x2 ≥ · · · ≥ xn−1 ≥ yn−1 ≥ xn.

Let A be a symmetric n by n square matrix, and let A′ be its n − 1 by
n − 1 lower right submatrix.

Examples

A =

1 4 3
4 5 6
3 6 9

 A′ =

(
5 6
6 9

)

The eigenvalues of A and A′ interlace.
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What We Are Doing With the Model

Let Xn−1 be the lower n − 1 by n − 1 submatrix of Xn. We saw that the
eigenvalues of Xn and Xn−1 interlace:
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What We are Doing With the Model (continued)

As n→∞, these diagrams converge to some curve:

We are interested in what this “limiting shape” is.
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Method of Traces

It turns out that the study of these diagrams is equivalent to considering
what happens to

trX k
n − trX k

n−1

as n→∞. We can work with the trace combinatorially:

trX k
n − trX k

n−1 =
∑
~i∈Bk

k∏
j=1

Xn(ij , ij+1)

where

Bk = {(i1, . . . , ik) ∈ [n]k : |ij − ij+1| ≤ 1 and ∃ij = 1}.
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Current Results

Main Theorem

In the β-Hermite case, the diagrams converge to the Logan-Shepp curve:

Ω(x) =

{
2
π (x arcsin( x2 ) +

√
4− x2), |x | ≤ 2

|x |, |x | ≥ 2

We have also shown that the fluctuations of the diagrams from the curve
are gaussian in some sense.
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Future Work

We also want to look at other random matrix models, such as β-Laguerre
and β-Jacobi. For β-Laguerre, we can describe the limiting shape, but we
conjecture that the fluctuations of the diagrams from the curve are not
gaussian.
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