Limits of Interlacing Eigenvalues in the Tridiagonal β -Hermite Matrix Model

Gopal K. Goel and Mentor Andrew Ahn

PRIMES Conference 2017

Gopal K. Goel and Mentor Andrew Ahn

About Beamer

May 20, 2017 1 / 18

Recall that an $m \times n$ matrix with entries in \mathbb{R} (or \mathbb{C}) is an array of numbers with m rows and n columns.

Recall that an $m \times n$ matrix with entries in \mathbb{R} (or \mathbb{C}) is an array of numbers with m rows and n columns.

Examples

Here are examples of 3×2 and 4×4 matrices:

$$\begin{pmatrix} 3 & -2 \\ e & 1 \\ -\pi & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{pmatrix}$$

This is how we multiply a vector by a matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{pmatrix}$$

Image: Image:

This is how we multiply a vector by a matrix

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{pmatrix}$$

Examples

$$\begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 7 \end{pmatrix} = \begin{pmatrix} -3 \\ 34 \end{pmatrix}$$

We say that $\lambda \in \mathbb{C}$ is an eigenvalue of a square matrix A if

$$Av = \lambda v$$

for some vector v. It turns out that there are n eigenvalues (up to multiplicity) of an $n \times n$ matrix A.

We say that $\lambda \in \mathbb{C}$ is an eigenvalue of a square matrix A if

$$Av = \lambda v$$

for some vector v. It turns out that there are n eigenvalues (up to multiplicity) of an $n \times n$ matrix A.

Examples

$$\begin{pmatrix} -2 & -4 & 2 \ -2 & 1 & 2 \ 4 & 2 & 5 \end{pmatrix} \begin{pmatrix} 2 \ -3 \ -1 \end{pmatrix} = 3 \begin{pmatrix} 2 \ -3 \ -1 \end{pmatrix}$$

so 3 is an eigenvalue of the original matrix.

Examples

Here is a symmetric matrix:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 7 & 4 \\ 3 & 4 & 9 \end{pmatrix}$$

Examples

Here is a symmetric matrix:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 7 & 4 \\ 3 & 4 & 9 \end{pmatrix}$$

If a matrix is symmetric, then all of its eigenvalues are real. Generally, we order the eigenvalues as follows:

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n.$$

Define a probability density p(x) to be a function

$$p: \mathbb{R} \to \mathbb{R}_{\geq 0}$$

such that $\int_{\mathbb{R}} p(x) dx = 1$.

A random variable X with values in \mathbb{R} and density p(x) is a "random number in \mathbb{R} which can be sampled such that its frequency (histogram) as the number of samples increase converge to p(x)."

More precisely,

$$\Pr(a \le X \le b) = \int_a^b p(x) dx.$$

A Gaussian Random Variable is one that has

$$p(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

Here is a sample of 10000 Gaussian random variables with $\mu=$ 0 and $\sigma=$ 1.

Define a joint probability density p(x) to be a function

 $p: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$

such that $\int_{\mathbb{R}^n} p(x) dx^n = 1$.

A random vector is a vector in \mathbb{R}^n that takes random values with joint distribution p(x).

A random matrix is a matrix whose entries are random variables. Note that the entries do not have to be independent.

We can now consider the eigenvalues of these matrices, etc.

A random matrix is a matrix whose entries are random variables. Note that the entries do not have to be independent.

We can now consider the eigenvalues of these matrices, etc.

Examples PRIMES problem set problem M2!

$$X_{n} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathcal{N}(0,2) & \chi_{(n-1)\beta} & & \\ \chi_{(n-1)\beta} & \mathcal{N}(0,2) & \chi_{(n-2)\beta} & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_{2\beta} & \mathcal{N}(0,2) & \chi_{\beta} \\ & & & \chi_{\beta} & \mathcal{N}(0,2) \end{pmatrix}$$

It turns out that the eigenvalues have joint distribution

$$\frac{1}{Z_n}\prod_{1\leq i< j\leq n} (\lambda_i-\lambda_j)^{\beta}\prod_{i=1}^n e^{-\frac{\lambda_i^2}{2}}.$$

•

$$X_n = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathcal{N}(0,2) & \chi_{(n-1)\beta} & & \\ \chi_{(n-1)\beta} & \mathcal{N}(0,2) & \chi_{(n-2)\beta} & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_{2\beta} & \mathcal{N}(0,2) & \chi_{\beta} \\ & & & \chi_{\beta} & \mathcal{N}(0,2) \end{pmatrix}$$

It turns out that the eigenvalues have joint distribution

$$\frac{1}{Z_n}\prod_{1\leq i< j\leq n} (\lambda_i-\lambda_j)^{\beta}\prod_{i=1}^n e^{-\frac{\lambda_i^2}{2}}.$$

<u>Motivation</u>. This joint distribution turns out to have an electrostatic interpretation.

٠

Interlacing

We say that two sequences $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^{n-1}$ interlace if

$$x_1 \geq y_1 \geq x_2 \geq \cdots \geq x_{n-1} \geq y_{n-1} \geq x_n.$$

We say that two sequences $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^{n-1}$ interlace if

$$x_1 \geq y_1 \geq x_2 \geq \cdots \geq x_{n-1} \geq y_{n-1} \geq x_n.$$

Let A be a symmetric n by n square matrix, and let A' be its n - 1 by n - 1 lower right submatrix.

Examples

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix} \ A' = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix}$$

We say that two sequences $\{x_i\}_{i=1}^n$, $\{y_j\}_{j=1}^{n-1}$ interlace if

$$x_1 \geq y_1 \geq x_2 \geq \cdots \geq x_{n-1} \geq y_{n-1} \geq x_n.$$

Let A be a symmetric n by n square matrix, and let A' be its n-1 by n-1 lower right submatrix.

Examples

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 4 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix} \ A' = \begin{pmatrix} 5 & 6 \\ 6 & 9 \end{pmatrix}$$

The eigenvalues of A and A' interlace.

What We Are Doing With the Model

Let X_{n-1} be the lower n-1 by n-1 submatrix of X_n . We saw that the eigenvalues of X_n and X_{n-1} interlace:

What We are Doing With the Model (continued)

As $n \to \infty$, these diagrams converge to some curve:

We are interested in what this "limiting shape" is.

It turns out that the study of these diagrams is equivalent to considering what happens to

$$\operatorname{tr} X_n^k - \operatorname{tr} X_{n-1}^k$$

as $n \to \infty$. We can work with the trace combinatorially:

$$\mathrm{tr} X_n^k - \mathrm{tr} X_{n-1}^k = \sum_{\vec{i} \in \mathcal{B}_k} \prod_{j=1}^k X_n(i_j, i_{j+1})$$

where

$$\mathcal{B}_k = \{(i_1, \ldots, i_k) \in [n]^k : |i_j - i_{j+1}| \le 1 \text{ and } \exists i_j = 1\}.$$

Main Theorem

In the β -Hermite case, the diagrams converge to the Logan-Shepp curve:

$$\Omega(x) = \left\{ egin{array}{c} rac{2}{\pi}(x \arcsin(rac{x}{2}) + \sqrt{4-x^2}), & |x| \leq 2 \ |x|, & |x| \geq 2 \end{array}
ight.$$

We have also shown that the fluctuations of the diagrams from the curve are gaussian in some sense.

We also want to look at other random matrix models, such as β -Laguerre and β -Jacobi. For β -Laguerre, we can describe the limiting shape, but we conjecture that the fluctuations of the diagrams from the curve are not gaussian.

- My mentor, Andrew Ahn
- Prof. Vadim Gorin for suggesting the problem
- Prof. Alan Edelman for useful discussions
- The MIT Math Department
- The MIT-PRIMES Program
- Prof. Pavel Etingof
- Dr. Slava Gerovitch
- Dr. Tanya Khovanova
- My Parents for supporting me throughout