Aaditya Singh, Sam Cohen Ao Sun, Project Mentor

PRIMES Conference, May 20, 2017

Outline

- Introduction
- Previous Results

2 Open Curves

- Infinite Curves
- Finite Curves

3 Closed Curves

- Convex Polygons
- Concave Polygons

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The Discrete Curve Shortening Flow Background

Introduction

Outline

Introduction

Previous Results

2 Open Curves

- Infinite Curves
- Finite Curves

3 Closed Curves

- Convex Polygons
- Concave Polygons

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Background

Introduction

Differential Geometry

Figure: Geometric meaning $\left(R = \frac{1}{k}\right)$

Background

Introduction

Differential Geometry

Definition

Given a smooth curve (x(s), y(s)), we define the **unit tangential vector** at every point as:

$$ec{t}=rac{1}{\sqrt{x^{\prime 2}(s)+y^{\prime 2}(s)}}\langle x^{\prime}(s),y^{\prime}(s)
angle$$

We define the unit normal vector at every point as:

$$\vec{n} = \frac{\vec{t'}}{|\vec{t'}|}$$

The **curvature** *k* such that:

$$k\vec{n} = \vec{t'}$$

Background

Introduction

Smooth Curve Shortening Flow

Differential equation

Define the motion of a curve such that every point \mathbf{x} moves according to the following differential equation:

$$\frac{d\mathbf{x}}{dt} = -k(\mathbf{x})\vec{n}(\mathbf{x})$$

Figure: A curve with $\frac{dx}{dt}$ vectors drawn in

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background

Introduction

Smooth Curve Shortening Flow

Ecker-Huisken Result

All smooth curves that are a graph of some function will converge to a straight line, if initially the graphs aren't too "weird".

Gage-Hamilton-Grayson Result

All smooth, closed curves will flow to a point under curve shortening flow, and become more and more circular.

Figure: A curve undergoing curve shortening flow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background

Introduction

Discrete Curve Shortening Flow

Curvature

Curvature $k(\mathbf{x})$ at point \mathbf{x} is $\pi - \alpha$, where α is the interior angle at \mathbf{x} .

Normal vectors

The normal vector $\vec{n}(\mathbf{x})$ at point \mathbf{x} is in the direction of the angle bisector at \mathbf{x} .

Figure: A smooth curve and a discrete analogue

Background

Introduction

Discrete Curve Shortening Flow

Figure: A shape undergoing discrete curve shortening flow

The Discrete Curve Shortening Flow Background

Previous Results

Outline

Background

- Introduction
- Previous Results

2 Open Curves

- Infinite Curves
- Finite Curves

- Convex Polygons
- Concave Polygons

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The Discrete Curve Shortening Flow Background Previous Results

Isosceles Triangles

- Top angle $< \frac{\pi}{3}$: flows to a line (Ramanujam)
- Top angle $> \frac{\pi}{3}$: flows to a point (Rowley and Cohen)

Figure: Isosceles triangle

Background

Previous Results

Isosceles Triangles

Figure: Phase plane diagram for isosceles triangles

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

The Discrete Curve Shortening Flow Background Previous Results

General Triangles

• All triangles except the isosceles specified before go to lines (Rowley and Cohen)

Figure: General triangle and phase plane diagram for general triangles

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Background

Previous Results

General Triangles

Figure: Phase plane diagram for general triangles

・ロト ・聞ト ・ヨト ・ヨト

æ

Open Curves Infinite Curves

Outline

- Introduction
- Previous Results
- 2 Open Curves
 Infinite Curves
 Finite Curves

3 Closed Curves

- Convex Polygons
- Concave Polygons

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Discrete Generalization

- Does Ecker and Huisken's result hold for discrete open curves
- Specifically graphs
- Even if we were to consider just a linear approximation of the flow, it would be incredibly complex, infinite system

Figure: A section of an infinite piecewise linear curve

Useful Restriction

- General infinite curves are very hard, so we can restrict conditions to allow for easier analysis.
- Had the idea of periodic curves with points that remain fixed between the repeating periods
- These curves we found would be of the type $\dots C C^T C C^T \dots$
- C^T: Construct fixed points every n s.t. θ_{an-m} = θ_{an+m} for m < n

Figure: Section of an infinite piecewise linear curve of this type

Finite Curves

Outline

- Introduction
- Previous Results
- Open Curves
 Infinite Curves
 Finite Curves

3 Closed Curves

- Convex Polygons
- Concave Polygons

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Description

By showing a result for finite curves, we can then show one for infinite curves

Finite piecewise linear curve

A collection of points $x_0,x_1,...,x_n$ defining a discrete curve, with x_0 and x_n being fixed under DCSF

Figure: Example of a finite piecewise linear curve

Equations

• The velocity of each point $\mathbf{x_0}, \mathbf{x_1}, ..., \mathbf{x_n}$ under, using the equation $\frac{d\mathbf{x}}{dt} = -k(\mathbf{x})\vec{n}(\mathbf{x})$ is

$$\frac{d\mathbf{x}_{i}}{dt} = \cos^{-1} \left(\frac{(\mathbf{x}_{i-1} - \mathbf{x}_{i}) \cdot (\mathbf{x}_{i+1} - \mathbf{x}_{i})}{|\mathbf{x}_{i-1} - \mathbf{x}_{i}| |\mathbf{x}_{i+1} - \mathbf{x}_{i}|} \right) \left(\frac{(\mathbf{x}_{i-1} - \mathbf{x}_{i}) |\mathbf{x}_{i+1} - \mathbf{x}_{i}| + (\mathbf{x}_{i+1} - \mathbf{x}_{i}) ||\mathbf{x}_{i-1} - \mathbf{x}_{i}|}{|((\mathbf{x}_{i-1} - \mathbf{x}_{i}) |\mathbf{x}_{i+1} - \mathbf{x}_{i}| + (\mathbf{x}_{i+1} - \mathbf{x}_{i}) ||\mathbf{x}_{i-1} - \mathbf{x}_{i}|)|} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equations

• The velocity of each point $\mathbf{x_0}, \mathbf{x_1}, ..., \mathbf{x_n}$ under, using the equation $\frac{d\mathbf{x}}{dt} = -k(\mathbf{x})\vec{n}(\mathbf{x})$ is

$$\frac{d\mathbf{x}_{i}}{dt} = \cos^{-1} \left(\frac{(\mathbf{x}_{i-1} - \mathbf{x}_{i}) \cdot (\mathbf{x}_{i+1} - \mathbf{x}_{i})}{|\mathbf{x}_{i-1} - \mathbf{x}_{i}| |\mathbf{x}_{i+1} - \mathbf{x}_{i}|} \right) \left(\frac{(\mathbf{x}_{i-1} - \mathbf{x}_{i}) |\mathbf{x}_{i+1} - \mathbf{x}_{i}| + (\mathbf{x}_{i+1} - \mathbf{x}_{i}) |\mathbf{x}_{i-1} - \mathbf{x}_{i}|}{|((\mathbf{x}_{i-1} - \mathbf{x}_{i}) |\mathbf{x}_{i+1} - \mathbf{x}_{i}| + (\mathbf{x}_{i+1} - \mathbf{x}_{i}) |\mathbf{x}_{i-1} - \mathbf{x}_{i}|)|} \right)$$

• This isn't very helpful...

Geometry

• Instead of analyzing the equations, we analyze the geometry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometry

• Instead of analyzing the equations, we analyze the geometry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• More specifically, the movement of the maximum and minimum points

Geometry

- Instead of analyzing the equations, we analyze the geometry
- More specifically, the movement of the maximum and minimum points
- Clear to see the maximum will always decrease and minimum increase (unless one is one of the endpoints)

Geometry

- Instead of analyzing the equations, we analyze the geometry
- More specifically, the movement of the maximum and minimum points
- Clear to see the maximum will always decrease and minimum increase (unless one is one of the endpoints)

• With this, we can determine the end behavior!

With this behavior of a constantly decreasing maximum and increasing minimum, we showed that all these curves result in a line!

Meaning then that infinite curves of the type $\dots C \ C^T \ C \ C^T \dots$ also go to lines

Open Curves

Finite Curves

An Animation

Figure: Evolution of a finite piecewise linear curve

Discrete Generalization

- Is there an analogue to the Gauge-Hamilton-Grayson Result?
- Will all polygons collapse to a point under the DCSF?
- Will polygons become more and more convex under the DCSF?
- Will all polygons become convex before collapsing under the DCSF?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convex Polygons

Outline

Background

- Introduction
- Previous Results

2 Open Curves

- Infinite Curves
- Finite Curves
- 3 Closed Curves• Convex Polygons
 - Concave Polygons

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Convex Polygons

Theorem

Under the DCSF, every convex polygon will remain convex until it collapses.

Figure: A sketch of the proof

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• However, a polygon will not necessarily become more convex:

Figure: An equiangular hexagon under the DCSF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Concave Polygons

Outline

1 Background

- Introduction
- Previous Results

2 Open Curves

- Infinite Curves
- Finite Curves

3 Closed Curves

- Convex Polygons
- Concave Polygons

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Closed Curves

Concave Polygons

Symmetric Concave Quadrilateral

• Simplest concave polygon

Theorem

Every symmetric concave quadrilateral will become convex before collapsing under the DCSF.

Figure: A symmetric concave quadrilateral

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Discrete Curve Shortening Flow Closed Curves Concave Polygons

Exploit Symmetry

• C and D will evolve symmetrically, only consider one of them

• Define $\angle CAB = \alpha$, $\angle CBA = \beta$, and AB = x

Figure: Three points whose evolution we will consider, normal vectors drawn in

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Discrete Curve Shortening Flow Closed Curves <u>Conc</u>ave Polygons

The Evolution

The Differential Equations

Three differential equations dictate the evolution of the points:

$$\frac{dx}{dt} = 2\alpha + 2\beta - 2\pi$$

$$\frac{d\alpha}{dt} = -\frac{\left(\left(\alpha + \beta\right)\cos\left(\frac{\alpha + \beta}{2}\right) - \left(-2\alpha + \pi\right)\sin(\alpha)\right)\csc(\beta)\sin(\alpha + \beta)}{x}$$

$$\frac{d\beta}{dt} = -\frac{\left(\left(\alpha + \beta\right)\cos\left(\frac{\alpha + \beta}{2}\right) - \left(-2\beta + \pi\right)\sin(\beta)\right)\csc(\alpha)\sin(\alpha + \beta)}{x}$$

• Different initial conditions will lead to different results

Closed Curves

Concave Polygons

Examples

Figure: $\alpha = \frac{2\pi}{3}$ and $\beta = \frac{\pi}{6}$ and x = 2

Closed Curves

Concave Polygons

Examples

Figure: $\alpha = \frac{191\pi}{200}$ and $\beta = \frac{\pi}{40}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Closed Curves

Concave Polygons

Figure: A shape undergoing discrete curve shortening flow

・ロト・日本・モート モー うへぐ

Closed Curves

Concave Polygons

Boundary Cases

• Want to show that α becomes less than $\frac{\pi}{2}$ before $\beta = 0$ (Case 1) or x = 0 (Case 2)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Closed Curves

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Closed Curves

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Closed Curves

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Closed Curves

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Closed Curves

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Closed Curves

Concave Polygons

Case 2: A similar approach

- Similar reasoning
- Use PPP of α vs x
- Algebraic manipulation yields proof

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The Discrete Curve Shortening Flow Closed Curves <u>Conc</u>ave Polygons

Generalization

The Differential Equations

Three differential equations dictate the evolution of the points:

$$\frac{dx}{dt} = 2\alpha + 2\beta - 2\pi$$
$$\frac{d\alpha}{dt} = -\frac{\left(\left(\alpha + \beta\right)\cos\left(\frac{\alpha + \beta}{2}\right) - \left(-2\alpha + \pi\right)\sin(\alpha)\right)\sin(\alpha + \beta)}{x\sin\beta}$$
$$\frac{d\beta}{dt} = -\frac{\left(\left(\alpha + \beta\right)\cos\left(\frac{\alpha + \beta}{2}\right) - \left(-2\beta + \pi\right)\sin(\beta)\right)\sin(\alpha + \beta)}{x\sin\alpha}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• What features of the equations make the result true?

Concave Polygons

- Does the geometry dictate the singular behavior of the derivatives when the figure is about to collapse?
- Will analogous dependencies hold for all quadrilaterals, implying that every quadrilateral will become convex?

Closed Curves

Concave Polygons

Acknowledgements

• Ao Sun, Project Mentor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PRIMES Program