The Discrete Curve Shortening Flow

Aaditya Singh, Sam Cohen
Ao Sun, Project Mentor

PRIMES Conference, May 20, 2017

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves
(3) Closed Curves
- Convex Polygons
- Concave Polygons

The Discrete Curve Shortening Flow
Background
Introduction

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves
(3) Closed Curves
- Convex Polygons
- Concave Polygons

Differential Geometry

Figure: Geometric meaning ($R=\frac{1}{k}$)

Differential Geometry cont

Definition

Given a smooth curve $(x(s), y(s))$, we define the unit tangential vector at every point as:

$$
\vec{t}=\frac{1}{\sqrt{x^{\prime 2}(s)+y^{\prime 2}(s)}}\left\langle x^{\prime}(s), y^{\prime}(s)\right\rangle
$$

We define the unit normal vector at every point as:

$$
\vec{n}=\frac{\overrightarrow{t^{\prime}}}{\left|\overrightarrow{t^{\prime}}\right|}
$$

The curvature k such that:

$$
k \vec{n}=\overrightarrow{t^{\prime}}
$$

Smooth Curve Shortening Flow

Differential equation

Define the motion of a curve such that every point \mathbf{x} moves according to the following differential equation:

$$
\frac{d \mathbf{x}}{d t}=-k(\mathbf{x}) \vec{n}(\mathbf{x})
$$

Figure: A curve with $\frac{d \mathrm{x}}{d t}$ vectors drawn in

Smooth Curve Shortening Flow
 cont

Ecker-Huisken Result

All smooth curves that are a graph of some function will converge to a straight line, if initially the graphs aren't too "weird".

Gage-Hamilton-Grayson Result

All smooth, closed curves will flow to a point under curve shortening flow, and become more and more circular.

Figure: A curve undergoing curve shortening flow

Discrete Curve Shortening Flow

Curvature

Curvature $k(\mathbf{x})$ at point \mathbf{x} is $\pi-\alpha$, where α is the interior angle at x.

Normal vectors

The normal vector $\vec{n}(\mathbf{x})$ at point \mathbf{x} is in the direction of the angle bisector at \mathbf{x}.

Figure: A smooth curve and a discrete analogue

Discrete Curve Shortening Flow

Figure: A shape undergoing discrete curve shortening flow

The Discrete Curve Shortening Flow
Background
Previous Results

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves
(3) Closed Curves
- Convex Polygons
- Concave Polygons

Isosceles Triangles

- Top angle $<\frac{\pi}{3}$: flows to a line (Ramanujam)
- Top angle $>\frac{\pi}{3}$: flows to a point (Rowley and Cohen)

Figure: Isosceles triangle

Isosceles Triangles
 cont.

Figure: Phase plane diagram for isosceles triangles

General Triangles

- All triangles except the isosceles specified before go to lines (Rowley and Cohen)

Figure: General triangle and phase plane diagram for general triangles

General Triangles cont.

Figure: Phase plane diagram for general triangles

The Discrete Curve Shortening Flow
Open Curves
Infinite Curves

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves

3 Closed Curves

- Convex Polygons
- Concave Polygons

Discrete Generalization

- Does Ecker and Huisken's result hold for discrete open curves
- Specifically graphs
- Even if we were to consider just a linear approximation of the flow, it would be incredibly complex, infinite system

Figure: A section of an infinite piecewise linear curve

Useful Restriction

- General infinite curves are very hard, so we can restrict conditions to allow for easier analysis.
- Had the idea of periodic curves with points that remain fixed between the repeating periods
- These curves we found would be of the type ...C $C^{T} \subset C^{T} \ldots$
- C^{T} : Construct fixed points every n s.t. $\theta_{a n-m}=\theta_{a n+m}$ for $m<n$

Figure: Section of an infinite piecewise linear curve of this type

The Discrete Curve Shortening Flow
Open Curves
Finite Curves

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves
(3) Closed Curves
- Convex Polygons
- Concave Polygons

Description

By showing a result for finite curves, we can then show one for infinite curves

Finite piecewise linear curve

A collection of points $\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}$ defining a discrete curve, with $\mathrm{x}_{\mathbf{0}}$ and x_{n} being fixed under DCSF

Figure: Example of a finite piecewise linear curve

Finite Curves

Equations

- The velocity of each point $\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}$ under, using the equation $\frac{d \mathbf{x}}{d t}=-k(\mathbf{x}) \vec{n}(\mathbf{x})$ is

$$
\frac{d x_{i}}{d t}=\cos ^{-1}\left(\frac{\left(x_{i-1}-x_{i}\right) \cdot\left(x_{i+1}-x_{i}\right)}{\left|x_{i-1}-x_{i}\right|\left|x_{i+1}-x_{i}\right|}\right)\left(\frac{\left(x_{i-1}-x_{i}\right)\left|x_{i+1}-x_{i}\right|+\left(x_{i+1}-x_{i}\right)| | x_{i-1}-x_{i} \mid}{\left|\left(\left(x_{i-1}-x_{i}\right)\left|x_{i+1}-x_{i}\right|+\left(x_{i+1}-x_{i}\right)| | x_{i-1}-x_{i}\right)\right|}\right)
$$

Finite Curves

Equations

- The velocity of each point $\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}$ under, using the equation $\frac{d \mathbf{x}}{d t}=-k(\mathbf{x}) \vec{n}(\mathbf{x})$ is $\frac{d x_{i}}{d t}=\cos ^{-1}\left(\frac{\left(x_{i-1}-x_{i}\right) \cdot\left(x_{i+1}-x_{i}\right)}{\left|x_{i-1}-x_{i}\right|| | x_{i+1}-x_{i} \mid}\right)\left(\frac{\left(x_{i-1}-x_{i}\right)\left|x_{i+1}-x_{i}\right|+\left(x_{i+1}-x_{i}\right)| | x_{i-1}-x_{i} \mid}{\left|\left(\left(x_{i-1}-x_{i}\right)\left|x_{i+1}-x_{i}\right|+\left(x_{i+1}-x_{i}\right)| | x_{i-1}-x_{i} \mid\right)\right|}\right)$
- This isn't very helpful...

Geometry

- Instead of analyzing the equations, we analyze the geometry

Geometry

- Instead of analyzing the equations, we analyze the geometry
- More specifically, the movement of the maximum and minimum points

Geometry

- Instead of analyzing the equations, we analyze the geometry
- More specifically, the movement of the maximum and minimum points
- Clear to see the maximum will always decrease and minimum increase (unless one is one of the endpoints)

Geometry

- Instead of analyzing the equations, we analyze the geometry
- More specifically, the movement of the maximum and minimum points
- Clear to see the maximum will always decrease and minimum increase (unless one is one of the endpoints)
- With this, we can determine the end behavior!

End Behavior

With this behavior of a constantly decreasing maximum and increasing minimum, we showed that all these curves result in a line!

Meaning then that infinite curves of the type $\ldots \subset C^{T} \subset C^{T} \ldots$ also go to lines

An Animation

Figure: Evolution of a finite piecewise linear curve

Discrete Generalization

- Is there an analogue to the Gauge-Hamilton-Grayson Result?
- Will all polygons collapse to a point under the DCSF?
- Will polygons become more and more convex under the DCSF?
- Will all polygons become convex before collapsing under the DCSF?

The Discrete Curve Shortening Flow
Closed Curves
Convex Polygons

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves
(3) Closed Curves
- Convex Polygons
- Concave Polygons

Convexity

Theorem

Under the DCSF, every convex polygon will remain convex until it collapses.

Figure: A sketch of the proof

Convexity

- However, a polygon will not necessarily become more convex:

Figure: An equiangular hexagon under the DCSF

The Discrete Curve Shortening Flow
Closed Curves
Concave Polygons

Outline

(1) Background

- Introduction
- Previous Results
(2) Open Curves
- Infinite Curves
- Finite Curves
(3) Closed Curves
- Convex Polygons
- Concave Polygons

Symmetric Concave Quadrilateral

- Simplest concave polygon

Theorem

Every symmetric concave quadrilateral will become convex before collapsing under the DCSF.

Figure: A symmetric concave quadrilateral

Exploit Symmetry

- C and D will evolve symmetrically, only consider one of them
- Define $\angle C A B=\alpha, \angle C B A=\beta$, and $A B=x$

Figure: Three points whose evolution we will consider, normal vectors drawn in

The Evolution

The Differential Equations

Three differential equations dictate the evolution of the points:

$$
\frac{d x}{d t}=2 \alpha+2 \beta-2 \pi
$$

$$
\begin{aligned}
& \frac{d \alpha}{d t}=-\frac{\left((\alpha+\beta) \cos \left(\frac{\alpha+\beta}{2}\right)-(-2 \alpha+\pi) \sin (\alpha)\right) \csc (\beta) \sin (\alpha+\beta)}{x} \\
& \frac{d \beta}{d t}=-\frac{\left((\alpha+\beta) \cos \left(\frac{\alpha+\beta}{2}\right)-(-2 \beta+\pi) \sin (\beta)\right) \csc (\alpha) \sin (\alpha+\beta)}{x}
\end{aligned}
$$

- Different initial conditions will lead to different results

Concave Polygons

Examples

Figure: $\alpha=\frac{2 \pi}{3}$ and $\beta=\frac{\pi}{6}$ and $x=2$

The Discrete Curve Shortening Flow
Closed Curves
Concave Polygons

Examples

Figure: $\alpha=\frac{191 \pi}{200}$ and $\beta=\frac{\pi}{40}$

Examples

Figure: A shape undergoing discrete curve shortening flow

Boundary Cases

$\alpha(0)$ near $\frac{\pi}{2}$ and $\beta(0)$ near 0

$\alpha(0)$ very near π and $\beta(0)$ very near 0

$$
\alpha(0) \text { and } \beta(0) \text { very near } \frac{\pi}{2}
$$

- Want to show that α becomes less than $\frac{\pi}{2}$ before $\beta=0$ (Case 1) or $x=0$ (Case 2)

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Concave Polygons

Case 1: Phase Plane Portrait

Figure: α vs β

Case 1: Phase Plane Portrait

Figure: α vs β

Case 1: Phase Plane Portrait

Figure: α vs β

Case 1: Phase Plane Portrait

Figure: α vs β

Case 2: A similar approach

- Similar reasoning
- Use PPP of α vs x
- Algebraic manipulation yields proof

Generalization

The Differential Equations

Three differential equations dictate the evolution of the points:

$$
\begin{gathered}
\frac{d x}{d t}=2 \alpha+2 \beta-2 \pi \\
\frac{d \alpha}{d t}=-\frac{\left((\alpha+\beta) \cos \left(\frac{\alpha+\beta}{2}\right)-(-2 \alpha+\pi) \sin (\alpha)\right) \sin (\alpha+\beta)}{x \sin \beta} \\
\frac{d \beta}{d t}=-\frac{\left((\alpha+\beta) \cos \left(\frac{\alpha+\beta}{2}\right)-(-2 \beta+\pi) \sin (\beta)\right) \sin (\alpha+\beta)}{x \sin \alpha}
\end{gathered}
$$

- What features of the equations make the result true?

Next Steps

- Does the geometry dictate the singular behavior of the derivatives when the figure is about to collapse?
- Will analogous dependencies hold for all quadrilaterals, implying that every quadrilateral will become convex?

Acknowledgements

- Ao Sun, Project Mentor
- PRIMES Program

