Pattern Avoidance on Binary Matrices

William Zhang
Under the mentorship of Jesse Geneson
May 20, 2017
Seventh Annual PRIMES Conference

Motivation

- Resolves the Stanley-Wilf conjecture

Motivation

- Resolves the Stanley-Wilf conjecture
- Bounds the complexity of an algorithm applied in motion planning in robotics

Motivation

- Resolves the Stanley-Wilf conjecture
- Bounds the complexity of an algorithm applied in motion planning in robotics
- Bounds the number of unit distances between vertices in a convex n-gon

Definitions

Binary Matrix

A binary matrix is a matrix that has only 0's or 1's for entries. They are also known as 0-1 matrices.

Definitions

Binary Matrix

A binary matrix is a matrix that has only 0's or 1's for entries. They are also known as $0-1$ matrices.

For convenience, we represent them with dots.

$$
\left(\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & & \\
\bullet & \bullet &
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if they have the same dimensions and corresponding coefficient satisfies $B_{i j} \leq A_{i j}$.

Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if they have the same dimensions and corresponding coefficient satisfies $B_{i j} \leq A_{i j}$.

L_{2} represents L_{1}.

Definitions (continued)

Containment and Avoidance
Let A and B be two binary matrices. We say that A contains B if some submatrix of A represents B. Otherwise, A avoids B.

Definitions (continued)

Containment and Avoidance

Let A and B be two binary matrices. We say that A contains B if some submatrix of A represents B. Otherwise, A avoids B.

$$
B=\left(\begin{array}{lll}
\bullet & \bullet & \\
\bullet & & \bullet
\end{array}\right)
$$

Definitions (continued)

Weight

The weight of a binary matrix A is the number of one entries in A. We denote it $w(A)$.

Definitions (continued)

Weight

The weight of a binary matrix A is the number of one entries in A. We denote it $w(A)$.

The extremal function

Given a binary matrix A, we define ex (A, n) to be the largest possible weight of an $n \times n$ binary matrix that avoids A. This function is only defined if A is a nonzero matrix.

Examples and Facts

Let B be a $k \times 1$ binary matrix of all ones. Then $\operatorname{ex}(B, n)=n(k-1)$.

Examples and Facts

Let B be a $k \times 1$ binary matrix of all ones. Then $\mathrm{ex}(B, n)=n(k-1)$.

$$
B=\left(\begin{array}{l}
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}\right)
$$

Examples and Facts (continued)

Let A and B be binary matrices such that A contains B, Then $\operatorname{ex}(A, n) \geq \operatorname{ex}(B, n)$.

Examples and Facts (continued)

If B is an 0-1 matrix, then $\operatorname{ex}(B, m+n) \geq \operatorname{ex}(B, m)+\operatorname{ex}(B, n)$ for all m, n.

Examples and Facts (continued)

If B is an 0-1 matrix, then $\operatorname{ex}(B, m+n) \geq \operatorname{ex}(B, m)+\operatorname{ex}(B, n)$ for all m, n.
Let M be an $m \times m$ matrix that avoids B, and let N be an $n \times n$ matrix that avoids B.

Examples and Facts (continued)

If B is an 0-1 matrix, then $\operatorname{ex}(B, m+n) \geq \operatorname{ex}(B, m)+\operatorname{ex}(B, n)$ for all m, n.
Let M be an $m \times m$ matrix that avoids B, and let N be an $n \times n$ matrix that avoids B.

$$
\left(\begin{array}{ccccc}
& & 0 & \cdots & 0 \\
& M & & \vdots & \ddots
\end{array}\right) \quad \vdots . \quad\left(\begin{array}{ccccccc}
0 & \cdots & 0 & & & \\
\vdots & \ddots & \vdots & & N & \\
& & & 0 & \cdots & 0 \\
0 & \cdots & 0 & & & \\
\vdots & \ddots & \vdots & & N & \\
0 & \cdots & 0 & & & 0 & \\
& & & 0 & \cdots & 0 \\
& M & & \vdots & \ddots & \vdots \\
& & & 0 & \cdots & 0
\end{array}\right)
$$

avoids B.

Examples and Facts (continued)

Let B be any nonzero binary matrix except for the 1×1 matrix of a single 1 entry. Then ex $(B, n)=\Omega(n)$.

Examples and Facts (continued)

Let B be any nonzero binary matrix except for the 1×1 matrix of a single 1 entry. Then ex $(B, n)=\Omega(n)$.

Results

Lemma

Let A be an $r \times c$ binary matrix. Then ex $(A, n)=\Omega\left(n^{2-\frac{r+c-2}{w(A)-1}}\right)$.

Results

Lemma

Let A be an $r \times c$ binary matrix. Then ex $(A, n)=\Omega\left(n^{2-\frac{r+c-2}{w(A)-1}}\right)$.

Corollary

If A is an $r \times c 0-1$ matrix with $w(A)>r+c-1$, then $\operatorname{ex}(A, n)=\Omega\left(n^{p}\right)$ for some $p>1$.

Results

Lemma

Let A be an $r \times c$ binary matrix. Then ex $(A, n)=\Omega\left(n^{2-\frac{r+c-2}{w(A)-1}}\right)$.

Corollary

If A is an $r \times c 0-1$ matrix with $w(A)>r+c-1$, then $\operatorname{ex}(A, n)=\Omega\left(n^{p}\right)$ for some $p>1$.

Lemma (CrowdMath, 2016)

If A is an $r \times c 0-1$ matrix with $w(A)>r+c-1$, then $\operatorname{ex}(A, n)=\Omega(n \log n)$.

Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)
Every $k \times k$ permutation matrix P satisfies ex $(P, n) \leq 2 k^{4}\binom{k^{2}}{k} n$. More importantly, ex $(P, n)=\Theta(n)$

Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)

Every $k \times k$ permutation matrix P satisfies $\mathrm{ex}(P, n) \leq 2 k^{4}\binom{k^{2}}{k} n$. More importantly, ex $(P, n)=\Theta(n)$

Furedi-Hajnal limit

If P is a binary matrix such that ex $(P, n)=\Theta(n)$, then $\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(P, n)}{n}$ exists and is called the Furedi-Hajnal limit. We denote it with $c(P)$.

More definitions

Distance Vector

In matrix P, the distance vector between entries $P_{i_{1}, j_{1}}$ and $P_{i_{2}, j_{2}}$ is $\left(i_{2}-i_{1}, j_{2}-j_{1}\right)$.

More definitions

Distance Vector

In matrix P, the distance vector between entries $P_{i_{1}, j_{1}}$ and $P_{i_{2}, j_{2}}$ is $\left(i_{2}-i_{1}, j_{2}-j_{1}\right)$.

r-repetition

A vector (x, y) is r-repeated in a permutation matrix P if (x, y) occurs as the distance vector of at least r pairs of 1 entries.

More definitions

Distance Vector

In matrix P, the distance vector between entries $P_{i_{1}, j_{1}}$ and $P_{i_{2}, j_{2}}$ is $\left(i_{2}-i_{1}, j_{2}-j_{1}\right)$.

r-repetition

A vector (x, y) is r-repeated in a permutation matrix P if (x, y) occurs as the distance vector of at least r pairs of 1 entries.

These definitions also extend to d-dimensional 0-1 matrices.

Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have $c(P)=2^{O\left(k^{2 / 3}(\log k)^{7 / 3} /(\log \log k)^{1 / 3}\right) \text {. } . . . \text {. }}$

Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have $c(P)=2^{O\left(k^{2 / 3}(\log k)^{7 / 3} /(\log \log k)^{1 / 3}\right) \text {. } . . . \text {. }}$

Lemma (Cibulka and Kyncl, 2016)

Almost all $k \times k$ permutation matrices are $\frac{4 \log k}{\log \log k}$-repetition free.

Main result

Multidimensional permutation matrices

A d-dimensional k-permutation matrix is a d-dimensional matrix such that every $(d-1)$-dimensional cross section of it has exactly a single 1 entry.

Theorem

Almost all d-dimensional k-permutation matrices are $\left(\frac{2 d \log k}{\log \log k}\right)$-repetition free for $d>2$.

Further Directions

- Prove that $c(P)=2^{o\left(k^{2 / 3}\right)}$ for all $k \times k$ permutation matrices P.

Further Directions

- Prove that $c(P)=2^{o\left(k^{2 / 3}\right)}$ for all $k \times k$ permutation matrices P.
- Extend the known bounds for $c(P)$ to d-dimensional permutations.

Further Directions

- Prove that $c(P)=2^{o\left(k^{2 / 3}\right)}$ for all $k \times k$ permutation matrices P.
- Extend the known bounds for $c(P)$ to d-dimensional permutations.
- Find stronger upper and lower bounds on the extremal function of a binary matrix based on its size and weight.

Acknowledgments

- MIT-PRIMES program
- MIT Math Department
- My mentor, Dr. Jesse Geneson
- My parents

