Pattern Avoidance on Binary Matrices

William Zhang

Under the mentorship of Jesse Geneson

May 20, 2017 Seventh Annual PRIMES Conference

Motivation

• Resolves the Stanley-Wilf conjecture

Motivation

- Resolves the Stanley-Wilf conjecture
- Bounds the complexity of an algorithm applied in motion planning in robotics

Motivation

- Resolves the Stanley-Wilf conjecture
- Bounds the complexity of an algorithm applied in motion planning in robotics
- Bounds the number of unit distances between vertices in a convex *n*-gon

Definitions

Binary Matrix

A *binary matrix* is a matrix that has only 0's or 1's for entries. They are also known as *0-1* matrices.

Definitions

Binary Matrix

A *binary matrix* is a matrix that has only 0's or 1's for entries. They are also known as *0-1* matrices.

For convenience, we represent them with dots.

$$egin{pmatrix} egin{array}{ccc} ellow&ellow\ ellow&&ellow\ ellow&&ellow&&ellow\ ellow&&ellow\ ellow&&ellow\ ellow&&ellow\ ellow&&ellow\ ellow&&ellow&&ellow\ ellow&&&ellow\ ellow&&&&ellow\ ellow&&&&ellow\ ellow&&&&ellow\ ellow&&&&ellow\ ellow&&&&& ellow&&&& ellow&&&&$$

Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if they have the same dimensions and corresponding coefficient satisfies $B_{ij} \leq A_{ij}$.

Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if they have the same dimensions and corresponding coefficient satisfies $B_{ij} \leq A_{ij}$.

Definitions (continued)

Containment and Avoidance

Let A and B be two binary matrices. We say that A contains B if some submatrix of A represents B. Otherwise, A avoids B.

Definitions (continued)

Containment and Avoidance

Let A and B be two binary matrices. We say that A contains B if some submatrix of A represents B. Otherwise, A avoids B.

$$B = \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$$

Definitions (continued)

Weight

The weight of a binary matrix A is the number of one entries in A. We denote it w(A).

Definitions (continued)

Weight

The weight of a binary matrix A is the number of one entries in A. We denote it w(A).

The extremal function

Given a binary matrix A, we define ex(A, n) to be the largest possible weight of an $n \times n$ binary matrix that avoids A. This function is only defined if A is a nonzero matrix.

Examples and Facts

Let B be a $k \times 1$ binary matrix of all ones. Then ex (B, n) = n(k - 1).

Examples and Facts

Examples and Facts (continued)

Let A and B be binary matrices such that A contains B, Then $ex(A, n) \ge ex(B, n)$.

Examples and Facts (continued)

If B is an 0-1 matrix, then $ex(B, m + n) \ge ex(B, m) + ex(B, n)$ for all m, n.

Examples and Facts (continued)

If B is an 0-1 matrix, then $ex(B, m + n) \ge ex(B, m) + ex(B, n)$ for all m, n.

Let *M* be an $m \times m$ matrix that avoids *B*, and let *N* be an $n \times n$ matrix that avoids *B*.

Examples and Facts (continued)

If B is an 0-1 matrix, then $ex(B, m + n) \ge ex(B, m) + ex(B, n)$ for all m, n.

Let *M* be an $m \times m$ matrix that avoids *B*, and let *N* be an $n \times n$ matrix that avoids *B*.

Examples and Facts (continued)

Let B be any nonzero binary matrix except for the 1×1 matrix of a single 1 entry. Then ex $(B, n) = \Omega(n)$.

Examples and Facts (continued)

Let *B* be any nonzero binary matrix except for the 1×1 matrix of a single 1 entry. Then $ex(B, n) = \Omega(n)$.

Results

Lemma

Let A be an $r \times c$ binary matrix. Then $ex(A, n) = \Omega\left(n^{2-\frac{r+c-2}{w(A)-1}}\right)$.

Results

Lemma

Let A be an $r \times c$ binary matrix. Then $ex(A, n) = \Omega\left(n^{2-\frac{r+c-2}{w(A)-1}}\right)$.

Corollary

If A is an $r \times c$ 0-1 matrix with w(A) > r + c - 1, then $ex(A, n) = \Omega(n^p)$ for some p > 1.

Results

Lemma

Let A be an $r \times c$ binary matrix. Then $ex(A, n) = \Omega\left(n^{2-\frac{r+c-2}{w(A)-1}}\right)$.

Corollary

If A is an $r \times c$ 0-1 matrix with w(A) > r + c - 1, then $ex(A, n) = \Omega(n^p)$ for some p > 1.

Lemma (CrowdMath, 2016)

If A is an $r \times c$ 0-1 matrix with w(A) > r + c - 1, then $ex(A, n) = \Omega(n \log n)$.

Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)

Every $k \times k$ permutation matrix P satisfies $\exp(P, n) \le 2k^4 \binom{k^2}{k} n$. More importantly, $\exp(P, n) = \Theta(n)$

Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)

Every $k \times k$ permutation matrix P satisfies $\exp(P, n) \le 2k^4 \binom{k^2}{k} n$. More importantly, $\exp(P, n) = \Theta(n)$

Furedi-Hajnal limit

If P is a binary matrix such that $ex(P, n) = \Theta(n)$, then $\lim_{n\to\infty} \frac{ex(P,n)}{n}$ exists and is called the *Furedi-Hajnal limit*. We denote it with c(P).

More definitions

Distance Vector

In matrix P, the distance vector between entries P_{i_1,j_1} and P_{i_2,j_2} is $(i_2 - i_1, j_2 - j_1)$.

More definitions

Distance Vector

In matrix P, the distance vector between entries P_{i_1,j_1} and P_{i_2,j_2} is $(i_2 - i_1, j_2 - j_1)$.

r-repetition

A vector (x, y) is *r*-repeated in a permutation matrix *P* if (x, y) occurs as the distance vector of at least *r* pairs of 1 entries.

More definitions

Distance Vector

In matrix P, the distance vector between entries P_{i_1,j_1} and P_{i_2,j_2} is $(i_2 - i_1, j_2 - j_1)$.

r-repetition

A vector (x, y) is *r*-repeated in a permutation matrix *P* if (x, y) occurs as the distance vector of at least *r* pairs of 1 entries.

These definitions also extend to *d*-dimensional 0-1 matrices.

Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have $c(P) = 2^{O(k^{2/3}(\log k)^{7/3}/(\log \log k)^{1/3})}$.

Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have $c(P) = 2^{O(k^{2/3}(\log k)^{7/3}/(\log \log k)^{1/3})}$.

Lemma (Cibulka and Kyncl, 2016)

Almost all $k \times k$ permutation matrices are $\frac{4 \log k}{\log \log k}$ -repetition free.

Main result

Multidimensional permutation matrices

A *d*-dimensional *k*-permutation matrix is a *d*-dimensional matrix such that every (d - 1)-dimensional cross section of it has exactly a single 1 entry.

Theorem

Almost all *d*-dimensional *k*-permutation matrices are $\left(\frac{2d \log k}{\log \log k}\right)$ -repetition free for d > 2.

Further Directions

• Prove that $c(P) = 2^{o(k^{2/3})}$ for all $k \times k$ permutation matrices P.

Further Directions

- Prove that $c(P) = 2^{o(k^{2/3})}$ for all $k \times k$ permutation matrices P.
- Extend the known bounds for c(P) to *d*-dimensional permutations.

Further Directions

- Prove that $c(P) = 2^{o(k^{2/3})}$ for all $k \times k$ permutation matrices P.
- Extend the known bounds for c(P) to *d*-dimensional permutations.
- Find stronger upper and lower bounds on the extremal function of a binary matrix based on its size and weight.

Acknowledgments

- MIT-PRIMES program
- MIT Math Department
- My mentor, Dr. Jesse Geneson
- My parents