Generalizations of Hall-Littlewood Polynomials

Mihir Singhal

Mentor: Christopher Ryba
PRIMES-USA

Seventh Annual MIT PRIMES Conference, 2017

Symmetric Polynomials

Definition (symmetric polynomial)

A symmetric polynomial is a polynomial in n variables that remains the same under any permutation of its n variables.

Symmetric Polynomials

Definition (symmetric polynomial)

A symmetric polynomial is a polynomial in n variables that remains the same under any permutation of its n variables.

Examples:

- $x_{1} x_{2} \ldots x_{n}$
- $x_{1} x_{2}^{2}+x_{1}^{2} x_{2}+x_{2} x_{3}^{2}+x_{2}^{2} x_{3}+x_{3} x_{1}^{2}+x_{3}^{2} x_{1}$
- Not symmetric: $x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}$

Monomial Symmetric Polynomials

Definition (partition)

A partition is a finite nonincreasing sequence of nonnegative integers. If λ is a partition, its elements are denoted $\lambda_{1} \geq \lambda_{2} \geq \ldots$.

Example: $(4,3,3,1,0)$

Monomial Symmetric Polynomials

Definition (partition)

A partition is a finite nonincreasing sequence of nonnegative integers. If λ is a partition, its elements are denoted $\lambda_{1} \geq \lambda_{2} \geq \ldots$.

Example: $(4,3,3,1,0)$

Definition (monomial symmetric polynomial)

If λ is a partition of length n, then $m_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the symmetric polynomial that is the sum of all distinct terms that result from permuting the variables in $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \ldots x_{n}^{\lambda_{n}}$.

Monomial Symmetric Polynomials

Definition (monomial symmetric polynomial)

If λ is a partition of length n, then $m_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the symmetric polynomial that is the sum of all distinct terms that result from permuting the variables in $x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \ldots x_{n}^{\lambda_{n}}$.

Examples:

$$
\begin{aligned}
& \text { - } m_{(4,2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{4} x_{2}^{2} x_{3}+x_{1}^{4} x_{2} x_{3}^{2}+x_{1}^{2} x_{2}^{4} x_{3}+x_{1}^{2} x_{2} x_{3}^{4} \\
& \quad+x_{1} x_{2}^{4} x_{3}^{2}+x_{1} x_{2}^{2} x_{3}^{4} \\
& \text { - } m_{(2,2,0)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2} \\
& \text { - } m_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}
\end{aligned}
$$

These polynomials form a basis of all symmetric polynomials.

Hall-Littlewood Polynomials

Definition (Hall-Littlewood polynomial)

For a constant t and a partition λ, the Hall-Littlewood polynomial is given by:

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; t\right)=\operatorname{const}_{\lambda}(t) \sum_{\sigma \in S_{n}} \sigma\left(\prod_{1 \leq i \leq n} x_{i}^{\lambda_{i}} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

where S_{n} is the set of permutations of the variables x_{i}.

Hall-Littlewood Polynomials

Definition (Hall-Littlewood polynomial)

For a constant t and a partition λ, the Hall-Littlewood polynomial is given by:

$$
P_{\lambda}\left(x_{1}, \ldots, x_{n} ; t\right)=\operatorname{const}_{\lambda}(t) \sum_{\sigma \in S_{n}} \sigma\left(\prod_{1 \leq i \leq n} x_{i}^{\lambda_{i}} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

where S_{n} is the set of permutations of the variables x_{i}.

- $t=1$ gives the monomial symmetric polynomials.
- $t=0$ gives the Schur polynomials, another important basis of symmetric polynomials.

Path Ensembles

This is a type- A path ensemble with end state λ with n paths, where n is the length of λ.

$\lambda=(4,3,3,1,0)$

Path Ensembles

$\lambda=(4,3,3,1,0)$

This is a type- A path ensemble with end state λ with n paths, where n is the length of λ.

- Paths may only go right and down and cannot intersect.
- Paths enter at the left and exit at the bottom.
- Only one horizontal path may enter or exit each tile.
- The number of paths exiting the bottom in column i is the number of instances of i in λ.
- Each tile is associated with a variable x_{i}, and each tile in a row is associated with the same variable.

Path Ensembles

$$
\lambda=(4,3,3,1,0)
$$

Path Ensembles

Each tile is assigned a weight, depending on the paths that enter and exit it and the variable x associated with it (t is, again, a constant):

m

x

$m-1$
$1-t^{m}$

The weight of a path ensemble is the product of the weights of all its tiles.

Path Ensembles and Hall-Littlewood Polynomials

Theorem (Tsilevich)

For a partition λ, the sum of the weights of all type- A path ensembles with end state λ, divided by $\prod_{1 \leq i \leq n} x_{i}$, is the Hall-Littlewood polynomial:

$$
\operatorname{const}_{\lambda}(t) \sum_{\sigma \in S_{n}} \sigma\left(\prod_{1 \leq i \leq n} x_{i}^{\lambda_{i}} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

Type-BC Path Ensembles

This is a type-BC path ensemble with end state λ.

- The construction is similar to type- A path ensembles, but there are twice as many rows, with tiles associated with the variable x_{i} or x_{i}^{-1}.
- At the left, exactly one path enters in each pair of rows with variables x_{i} and x_{i}^{-1}.
- Weights are the same, but with an additional weight of $-t$ each time a path enters in the row associated with x_{i}^{-1}.
- (The model is simplified slightly here for brevity.)

Type- $B C$ Hall-Littlewood Polynomials

Theorem (Wheeler, Zinn-Justin)

The sum of the weights of all type-BC path ensembles with end state λ, divided by $\prod_{1 \leq i \leq n}\left(x_{i}-t x_{i}^{-1}\right)$, is the type-BC Hall-Littlewood polynomial:

$$
\operatorname{const}_{\lambda}(t) \sum_{\omega \in S_{n} \rtimes\{ \pm 1\}^{n}} \omega\left(\prod_{1 \leq i \leq n} \frac{x_{i}^{\lambda_{i}}}{1-x_{i}^{-2}} \prod_{1 \leq i<j \leq n} \frac{\left(x_{i}-t x_{j}\right)\left(x_{i} x_{j}-t\right)}{\left(x_{i}-x_{j}\right)\left(x_{i} x_{j}-1\right)}\right)
$$

where $S_{n} \rtimes\{ \pm 1\}^{n}$ is similar to the set of permutations of the variables, except that it can take x_{i} to either x_{j} or x_{j}^{-1}.

Generalized Weights

Generalized weights are defined with an additional constant parameter s (they give normal weights when $s=0$):

m
$\frac{x-s t^{m}}{1-s x}$

$m+1$
$\frac{\left(1-s^{2} t^{m}\right) x}{1-s x}$
m

$m-1$
$\frac{1-t^{m}}{1-s x}$
m

$$
\frac{1-s t^{m} x}{1-s x}
$$

Problem

Theorem (Borodin)

The sum of the generalized weights of all type- A path ensembles with end state λ, divided by $\prod_{1 \leq i \leq n} x_{i}$, is:

$$
\operatorname{const}_{\lambda}(t, s) \sum_{\sigma \in S_{n}} \sigma\left(\prod_{1 \leq i \leq n} \frac{\left(\left(x_{i}-s\right) /\left(1-s x_{i}\right)\right)^{\lambda_{i}}}{1-s x_{i}} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

Problem

Theorem (Borodin)

The sum of the generalized weights of all type- A path ensembles with end state λ, divided by $\prod_{1 \leq i \leq n} x_{i}$, is:

$$
\operatorname{const}_{\lambda}(t, s) \sum_{\sigma \in S_{n}} \sigma\left(\prod_{1 \leq i \leq n} \frac{\left(\left(x_{i}-s\right) /\left(1-s x_{i}\right)\right)^{\lambda_{i}}}{1-s x_{i}} \prod_{1 \leq i<j \leq n} \frac{x_{i}-t x_{j}}{x_{i}-x_{j}}\right)
$$

Question (Borodin)

How do we similarly generalize type- $B C$ Hall-Littlewood polynomials?

Our Result

Theorem

The sum of the generalized weights of all type- $B C$ path ensembles with end state λ, divided by $\prod_{1 \leq i \leq n}\left(x_{i}-t x_{i}^{-1}\right)$, is:
const $_{\lambda}(t, s) \sum_{\omega \in S_{n} \rtimes\{ \pm 1\}^{n}} \omega\left(\prod_{1 \leq i \leq n} \frac{\left(\left(x_{i}-s\right) /\left(1-s x_{i}\right)\right)^{\lambda_{i}}}{\left(1-x_{i}^{-2}\right)\left(1-s x_{i}\right)} \prod_{1 \leq i<j \leq n} \frac{\left(x_{i}-t x_{j}\right)\left(x_{i} x_{j}-t\right)}{\left(x_{i}-x_{j}\right)\left(x_{i} x_{j}-1\right)}\right)$.

Further Research

- Type- $B C$ polynomials have a dual formed by slightly modifying the weights. What is the corresponding dual of generalized type- $B C$ polynomials?

Further Research

- Type- $B C$ polynomials have a dual formed by slightly modifying the weights. What is the corresponding dual of generalized type- $B C$ polynomials?
- Borodin defined skew generalized type- A Hall-Littlewood polynomials by allowing paths to enter at the top. Is there an analog for type- $B C$ Hall-Littlewood polynomials?

Further Research

- Type- $B C$ polynomials have a dual formed by slightly modifying the weights. What is the corresponding dual of generalized type- $B C$ polynomials?
- Borodin defined skew generalized type- A Hall-Littlewood polynomials by allowing paths to enter at the top. Is there an analog for type- $B C$ Hall-Littlewood polynomials?
- What previously proven identities can be generalized to apply to generalized type- $B C$ Hall-Littlewood polynomials?

Acknowledgements

would like to thank:

- Christopher Ryba, my mentor
- Prof. Alexei Borodin for suggesting the project
- The MIT math department and PRIMES program
- Dr. Vineet Gupta
- My parents

