ARITHMETIC PROPERTIES OF WEIGHTED CATALAN NUMBERS

Jason Chen
Mentor: Dmitry Kubrak
May 20, 2017
MIT PRIMES Conference

BACKGROUND: CATALAN NUMBERS

Definition

The Catalan numbers are the sequence of integers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

The first few values are:
$C_{0}=1$
$C_{3}=5$
$C_{6}=132$
$C_{1}=1$
$C_{4}=14$
$C_{7}=429$
$C_{2}=2$
$C_{5}=42$
$C_{8}=1430$.

BACKGROUND: CATALAN NUMBERS

C_{n} is the number of full triangulations of an $(n+2)$-gon.
Example

$$
C_{3}=5
$$

BACKGROUND: CATALAN NUMBERS

C_{n} is the number of ways to pair n sets of brackets.

Example

$$
\begin{gathered}
C_{3}=5 \\
((())) \\
(()()) \\
(())() \\
()(()) \\
()()()
\end{gathered}
$$

BACKGROUND: CATALAN NUMBERS

Definition

A Dyck path of length $2 n$ is a continuous broken line lying in the first quadrant of the plane, starting at the origin $(0,0)$ and consisting of n "up-steps" in the direction $\langle 1,1\rangle$ and n "down-steps" in the direction $\langle 1,-1\rangle$.

Example

length 6:

length 8:

CATALAN NUMBERS: DYCK PATHS

C_{n} is the number of Dyck paths of length $2 n$.

Example

$$
C_{3}=5
$$

CATALAN NUMBERS: RECURRENCE

The Catalan numbers are known to satisfy the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

CATALAN NUMBERS: RECURRENCE

The Catalan numbers are known to satisfy the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

From the recurrence, we get the equation

$$
\mathcal{C}(x)=x \cdot \mathcal{C}(x)^{2}+1
$$

where $\mathcal{C}(x)$ is the generating function of the Catalan numbers:

$$
C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\cdots
$$

CATALAN NUMBERS: GENERATING FUNCTION

Solving $\mathcal{C}(x)=x \cdot \mathcal{C}(x)^{2}+1$ gives

$$
\mathcal{C}(x)=\frac{1-\sqrt{1-4 x}}{2 x} .
$$

CATALAN NUMBERS: GENERATING FUNCTION

Solving $\mathcal{C}(x)=x \cdot \mathcal{C}(x)^{2}+1$ gives

$$
\mathcal{C}(x)=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Another expression for $\mathcal{C}(x)$ is the continued fraction:

$$
\mathcal{C}(x)=\frac{1}{1-\frac{x}{1-\frac{x}{1-\frac{x}{1-\ddots}}}}
$$

WEIGHTED CATALAN NUMBERS: DYCK PATHS

Suppose we have a sequence of integers $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, \ldots\right)$ and a Dyck path P, as shown

WEIGHTED CATALAN NUMBERS: DYCK PATHS

Suppose we have a sequence of integers $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, b_{3}, \ldots\right)$ and a Dyck path P, as shown

WEIGHTED CATALAN NUMBERS

Definition

The nth weighted Catalan number $C_{n}^{\mathbf{b}}$ is the sum of weights over all Dyck paths P of length $2 n$.

$$
C_{n}^{\mathbf{b}}=\sum_{\text {paths } P} w t(P) .
$$

WEIGHTED CATALAN NUMBERS

The first few values in terms of b_{i} are:

$$
\begin{aligned}
& C_{0}^{\mathbf{b}}=1 \\
& C_{1}^{\mathbf{b}}= b_{0} \\
& C_{2}^{\mathbf{b}}= b_{0}^{2}+b_{0} b_{1} \\
& C_{3}^{\mathbf{b}}= b_{0}^{3}+2 b_{0}^{2} b_{1}+b_{0} b_{1}^{2}+b_{0} b_{1} b_{2} \\
& C_{4}^{\mathbf{b}}= b_{0}^{4} \\
&+3 b_{0}^{3} b_{1}+3 b_{0}^{2} b_{1}^{2}+b_{0} b_{1}^{3}+2 b_{0}^{2} b_{1} b_{2}+2 b_{0} b_{1}^{2} b_{2} \\
&+b_{0} b_{1} b_{2}^{2}+b_{0} b_{1} b_{2} b_{3} \\
& C_{5}^{\mathbf{b}}= b_{0}^{5} \\
&+4 b_{0}^{4} b_{1}+6 b_{0}^{3} b_{1}^{2}+3 b_{0}^{3} b_{1} b_{2}+4 b_{0}^{2} b_{1}^{3}+2 b_{0}^{2} b_{1} b_{2}^{2} \\
&+b_{0} b_{1} b_{2}^{3}+3 b_{0} b_{1}^{2} b_{2}^{2}+b_{0} b_{1} b_{2} b_{3}^{2}+3 b_{0} b_{1}^{3} b_{2}+2 b_{0} b_{1} b_{2}^{2} b_{3} \\
&+2 b_{0} b_{1}^{2} b_{2} b_{3}+b_{0} b_{1} b_{2} b_{3} b_{4}
\end{aligned}
$$

WEIGHTED CATALAN NUMBERS: SPECIFIC CASES

Example

The sequence $\mathbf{b}=(1,1,1, \ldots)$ gives the Catalan numbers.

WEIGHTED CATALAN NUMBERS: SPECIFIC CASES

Example

The sequence $\mathbf{b}=(1,1,1, \ldots)$ gives the Catalan numbers.

Example

For an integer $a, \mathbf{b}=(a, a, a, \ldots)$ gives the sequence

$$
C_{n}^{\mathbf{b}}=a^{n} C_{n} .
$$

WEIGHTED CATALAN NUMBERS: SPECIFIC CASES

Example

The sequence $\mathbf{b}=(1,1,1, \ldots)$ gives the Catalan numbers.

Example

For an integer $a, \mathbf{b}=(a, a, a, \ldots)$ gives the sequence

$$
C_{n}^{\mathbf{b}}=a^{n} C_{n} .
$$

Example

The sequence $\mathbf{b}=(1,2,3,4, \ldots)$ gives $C_{n}^{\mathbf{b}}=(2 n-1)!$!. Similarly, $\mathbf{b}=(1,1,2,2,3,3,4, \ldots)$ gives $C_{n}^{\mathbf{b}}=n!$.

WEIGHTED CATALAN NUMBERS: SPECIFIC CASES

Example

For an integer $q, \mathbf{b}=\left(q^{0}, q^{1}, q^{2}, q^{3}, \ldots\right)$ gives the q-Catalan numbers.

WEIGHTED CATALAN NUMBERS: SPECIFIC CASES

Example

For an integer $q, \mathbf{b}=\left(q^{0}, q^{1}, q^{2}, q^{3}, \ldots\right)$ gives the q-Catalan numbers.

- Macdonald polynomials
- Geometry of Hilbert schemes
- Harmonic analysis
- Representation theory
- Mathematical physics
- Algebraic combinatorics

HISTORY OF WEIGHTED CATALAN NUMBERS

Theorem (A. Postnikov, 2000)

The number of plane Morse links of order n are the weighted Catalan numbers $C_{n}^{\mathbf{b}}$ for the sequence $\mathbf{b}=\left(1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots\right)$. This sequence is commonly denoted L_{n}.

HISTORY OF WEIGHED CATALAN NUMBERS

Theorem (Kummer)

If $\nu_{2}(n)$ denotes the largest power of 2 dividing n, and $s_{2}(n)$ denotes the sum of the binary digits of n, then

$$
\nu_{2}\left(C_{n}\right)=s_{2}(n+1)-1 .
$$

HISTORY OF WEIGHED CATALAN NUMBERS

Definition

Let Δ be the difference operator, acting on functions $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}$ by $(\Delta f)(x)=f(x+1)-f(x)$.

Theorem (A. Postnikov, 2006)

If the sequence \mathbf{b} satisfies:

- $b(0)$ is odd, and
- $2^{n+1} \mid\left(\Delta^{n} \mathbf{b}\right)(x)$ for all $n \geq 1$ and $x \in \mathbb{Z}_{\geq 0}$,
then

$$
\nu_{2}\left(C_{n}^{\mathbf{b}}\right)=\nu_{2}\left(C_{n}\right)=s_{2}(n+1)-1 .
$$

CURRENT RESEARCH: RECURSION

Let \mathcal{S} be the shift operator:

$$
\mathcal{S}:\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

CURRENT RESEARCH: RECURSION

Let \mathcal{S} be the shift operator:

$$
\mathcal{S}:\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Then we have the recurrence:

$$
C_{n+1}^{\mathbf{b}}=b_{0} \sum_{k=0}^{n} C_{k}^{\mathcal{S}(\mathbf{b})} C_{n-k}^{\mathbf{b}}
$$

CURRENT RESEARCH: GENERATING FUNCTION

Recall the generating function for C_{n}

$$
\mathcal{C}(x)=\frac{1}{1-\frac{x}{1-\frac{x}{1-\ddots}}} .
$$

For $C_{n}^{\mathbf{b}}$,

$$
\mathcal{C}^{\mathbf{b}}(x)=\frac{1}{1-\frac{b_{0} x}{1-\frac{b_{1} x}{1-\frac{b_{2} x}{1-\ddots}}}} .
$$

CURRENT RESEARCH

We want to study $C_{n}^{\mathbf{b}}$ modulo primes p, or more generally, p^{n}. Since $C_{n}^{\mathbf{b}}$ is a polynomial in b_{i}, it suffices to consider the residues of b_{i} modulo p.

Theorem

Let $\mathbf{b}=\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ and p be prime. Then $C_{n}^{\mathbf{b}}$ is eventually periodic modulo p iff any of b_{i} are congruent to $0 \bmod p$.

This is because if any of the b_{i} are 0 , then $\mathcal{C}^{\mathbf{b}}(x)$ is rational, i.e.

$$
\mathcal{C}^{\mathbf{b}}(x)=\frac{p(x)}{q(x)}
$$

for some polynomials $p(x), q(x)$.

CURRENT RESEARCH: RESULTS

If $p=2$, then we can describe the period:

Theorem

Consider a sequence $\mathbf{b} \in \mathbb{F}_{2}^{\mathbb{N}}$ such that $b_{k}=0$, and $b_{i}=1$ for $i<k$. Then

$$
\mathcal{C}^{\mathbf{b}}(x)=\frac{p_{k+1}(x)}{p_{k+2}(x)},
$$

where

$$
p_{k+2}(x)=p_{k+1}(x)+x \cdot p_{k}(x)
$$

with $p_{0}(x)=0$ and $p_{1}(x)=1$.
The period of the sequence $\mathcal{C}_{n}^{\mathbf{b}}$ is equal to the minimal number m such that $p_{k+2}(x)$ divides $x^{m}-1$.

CURRENT RESEARCH: RESULTS

It turns out that $p_{2^{k}}(x)=1$ for all k. In particular, we get:

Corollary

Let $k \geq 1$ be a natural number. Consider a sequence $\mathbf{b} \in \mathbb{F}_{2}^{\mathbb{N}}$ such that $b_{2^{k}-2}=0$, and $b_{i}=1$ for $i<2^{k}-2$. Then

$$
\mathcal{C}^{\mathbf{b}}(x)=p_{2^{k}-1}(x)
$$

In particular, it is a polynomial of degree $2^{k-1}-1$ and so the sequence $\mathcal{C}_{n}^{\mathbf{b}}$ is identically 0 for $n \geq 2^{k-1}$.

DIRECTION OF FUTURE RESEARCH

- What is the period of L_{n} modulo p^{n} ?

DIRECTION OF FUTURE RESEARCH

- What is the period of L_{n} modulo p^{n} ?

DIRECTION OF FUTURE RESEARCH

- What is the period of L_{n} modulo p^{n} ?

Conjecture (A. Postnikov)

The period of L_{n} modulo 3^{k+3} is exactly $2 \cdot 3^{k}$.

DIRECTION OF FUTURE RESEARCH

- What is the period of L_{n} modulo p^{n} ?

Conjecture (A. Postnikov)

The period of L_{n} modulo 3^{k+3} is exactly $2 \cdot 3^{k}$.

- What is the period of $C_{n}^{\mathbf{b}}$ modulo p^{n} ?

DIRECTION OF FUTURE RESEARCH

- What is the period of L_{n} modulo p^{n} ?

Conjecture (A. Postnikov)

The period of L_{n} modulo 3^{k+3} is exactly $2 \cdot 3^{k}$.

- What is the period of $C_{n}^{\mathbf{b}}$ modulo p^{n} ?
- Can we classify sequences for primes greater than 2 ?

ACKNOWLEDGMENTS

- MIT PRIMES

ACKNOWLEDGMENTS

- MIT PRIMES
- Professor Alexander Postnikov

ACKNOWLEDGMENTS

- MIT PRIMES
- Professor Alexander Postnikov
- Dmitry Kubrak

ACKNOWLEDGMENTS

- MIT PRIMES
- Professor Alexander Postnikov
- Dmitry Kubrak
- My parents

QuESTIONS?

