ARITHMETIC PROPERTIES OF WEIGHTED CATALAN NUMBERS

Jason Chen Mentor: Dmitry Kubrak May 20, 2017

MIT PRIMES Conference

BACKGROUND: CATALAN NUMBERS

Definition

The Catalan numbers are the sequence of integers

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

The first few values are:

- $C_0 = 1$ $C_3 = 5$ $C_6 = 132$
- $C_1 = 1$ $C_4 = 14$ $C_7 = 429$
- $C_2 = 2 \qquad \qquad C_5 = 42 \qquad \qquad C_8 = 1430.$

BACKGROUND: CATALAN NUMBERS

C_n is the number of full triangulations of an (n + 2)-gon.

Example

C_n is the number of ways to pair n sets of brackets.

Example		
	с г	
	$C_3 = 5$	
	((()))	
	(<mark>()(</mark>))	
	(())()	
	()(())	
	()()()	

Definition

A Dyck path of length 2n is a continuous broken line lying in the first quadrant of the plane, starting at the origin (0,0) and consisting of n "up-steps" in the direction (1,1) and n "down-steps" in the direction (1,-1).

C_n is the number of Dyck paths of length 2n.

The Catalan numbers are known to satisfy the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \qquad C_0 = 1.$$

The Catalan numbers are known to satisfy the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \qquad C_0 = 1.$$

From the recurrence, we get the equation

$$\mathcal{C}(x) = x \cdot \mathcal{C}(x)^2 + 1,$$

where C(x) is the generating function of the Catalan numbers:

$$C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \cdots$$

CATALAN NUMBERS: GENERATING FUNCTION

Solving $C(x) = x \cdot C(x)^2 + 1$ gives

$$\mathcal{C}(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

Solving $C(x) = x \cdot C(x)^2 + 1$ gives

$$\mathcal{C}(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

Another expression for C(x) is the continued fraction:

Suppose we have a sequence of integers $\mathbf{b} = (b_0, b_1, b_2, b_3, ...)$ and a Dyck path *P*, as shown

Suppose we have a sequence of integers $\mathbf{b} = (b_0, b_1, b_2, b_3, ...)$ and a Dyck path *P*, as shown

Definition

The *n*th weighted Catalan number $C_n^{\mathbf{b}}$ is the sum of weights over all Dyck paths *P* of length 2*n*.

$$C_n^{\mathbf{b}} = \sum_{\text{paths } P} \operatorname{wt}(P).$$

WEIGHTED CATALAN NUMBERS

:

The first few values in terms of b_i are:

$$\begin{split} C_0^{\mathbf{b}} &= 1 \\ C_1^{\mathbf{b}} &= b_0 \\ C_2^{\mathbf{b}} &= b_0^2 + b_0 b_1 \\ C_3^{\mathbf{b}} &= b_0^3 + 2b_0^2 b_1 + b_0 b_1^2 + b_0 b_1 b_2 \\ C_4^{\mathbf{b}} &= b_0^4 + 3b_0^3 b_1 + 3b_0^2 b_1^2 + b_0 b_1^3 + 2b_0^2 b_1 b_2 + 2b_0 b_1^2 b_2 \\ &\quad + b_0 b_1 b_2^2 + b_0 b_1 b_2 b_3 \\ C_5^{\mathbf{b}} &= b_0^5 + 4b_0^4 b_1 + 6b_0^3 b_1^2 + 3b_0^3 b_1 b_2 + 4b_0^2 b_1^3 + 2b_0^2 b_1 b_2^2 \\ &\quad + b_0 b_1 b_2^3 + 3b_0 b_1^2 b_2^2 + b_0 b_1 b_2 b_3^2 + 3b_0 b_1^3 b_2 + 2b_0 b_1 b_2^2 b_3 \\ &\quad + 2b_0 b_1^2 b_2 b_3 + b_0 b_1 b_2 b_3 b_4 \end{split}$$

The sequence $\mathbf{b} = (1, 1, 1, ...)$ gives the Catalan numbers.

The sequence $\mathbf{b} = (1, 1, 1, ...)$ gives the Catalan numbers.

Example

For an integer a, $\mathbf{b} = (a, a, a, ...)$ gives the sequence

$$C_n^{\mathbf{b}} = a^n C_n.$$

The sequence $\mathbf{b} = (1, 1, 1, ...)$ gives the Catalan numbers.

Example

For an integer a, $\mathbf{b} = (a, a, a, ...)$ gives the sequence

$$C_n^{\mathbf{b}} = a^n C_n.$$

Example

The sequence $\mathbf{b} = (1, 2, 3, 4, ...)$ gives $C_n^{\mathbf{b}} = (2n - 1)!!$. Similarly, $\mathbf{b} = (1, 1, 2, 2, 3, 3, 4, ...)$ gives $C_n^{\mathbf{b}} = n!$.

For an integer q, $\mathbf{b} = (q^0, q^1, q^2, q^3, ...)$ gives the q-Catalan numbers.

For an integer q, $\mathbf{b} = (q^0, q^1, q^2, q^3, ...)$ gives the q-Catalan numbers.

- Macdonald polynomials
- Geometry of Hilbert schemes
- Harmonic analysis
- Representation theory
- Mathematical physics
- Algebraic combinatorics

Theorem (A. Postnikov, 2000)

The number of plane Morse links of order n are the weighted Catalan numbers $C_n^{\mathbf{b}}$ for the sequence $\mathbf{b} = (1^2, 3^2, 5^2, 7^2, ...)$. This sequence is commonly denoted L_n .

Theorem (Kummer)

If $\nu_2(n)$ denotes the largest power of 2 dividing n, and $s_2(n)$ denotes the sum of the binary digits of n, then

$$\nu_2(C_n) = s_2(n+1) - 1.$$

Definition

Let Δ be the difference operator, acting on functions

$$f \colon \mathbb{Z}_{\geq 0} o \mathbb{Z}$$
 by $(\Delta f)(x) = f(x+1) - f(x).$

Theorem (A. Postnikov, 2006)

If the sequence **b** satisfies:

- b(0) is odd, and
- $2^{n+1} \mid (\Delta^n \mathbf{b})(x)$ for all $n \geq 1$ and $x \in \mathbb{Z}_{\geq 0}$,

then

$$\nu_2(C_n^{\mathbf{b}}) = \nu_2(C_n) = s_2(n+1) - 1.$$

Let \mathcal{S} be the shift operator:

$$S: (a_0, a_1, a_2, a_3, \dots) \mapsto (a_1, a_2, a_3, \dots).$$

Let \mathcal{S} be the shift operator:

$$S: (a_0, a_1, a_2, a_3, \dots) \mapsto (a_1, a_2, a_3, \dots).$$

Then we have the recurrence:

$$C_{n+1}^{\mathbf{b}} = b_0 \sum_{k=0}^n C_k^{\mathcal{S}(\mathbf{b})} C_{n-k}^{\mathbf{b}}.$$

CURRENT RESEARCH: GENERATING FUNCTION

Recall the generating function for C_n

$$\mathcal{C}(x) = \frac{1}{1 - \frac{x}{1 -$$

For $C_n^{\mathbf{b}}$,

$$C^{\mathbf{b}}(x) = \frac{1}{1 - \frac{b_0 x}{1 - \frac{b_1 x}{1 - \frac{b_2 x}{1 - \frac{\cdots}{1 - \cdots}{1 - \frac{\cdots}$$

We want to study $C_n^{\mathbf{b}}$ modulo primes p, or more generally, p^n .

Since $C_n^{\mathbf{b}}$ is a polynomial in b_i , it suffices to consider the residues of b_i modulo p.

Theorem

Let $\mathbf{b} = (b_0, b_1, b_2, ...)$ and p be prime. Then $C_n^{\mathbf{b}}$ is eventually periodic modulo p iff any of b_i are congruent to 0 mod p.

This is because if any of the b_i are 0, then $C^{\mathbf{b}}(x)$ is rational, i.e.

$$\mathcal{C}^{\mathbf{b}}(x) = \frac{p(x)}{q(x)}$$

for some polynomials p(x), q(x).

If p = 2, then we can describe the period:

Theorem

Consider a sequence $\mathbf{b} \in \mathbb{F}_2^{\mathbb{N}}$ such that $b_k = 0$, and $b_i = 1$ for i < k. Then

$$\mathcal{C}^{\mathbf{b}}(x) = \frac{p_{k+1}(x)}{p_{k+2}(x)},$$

where

$$p_{k+2}(x) = p_{k+1}(x) + x \cdot p_k(x),$$

with $p_0(x) = 0$ and $p_1(x) = 1$.

The period of the sequence $C_n^{\mathbf{b}}$ is equal to the minimal number m such that $p_{k+2}(x)$ divides $x^m - 1$.

It turns out that $p_{2^k}(x) = 1$ for all k. In particular, we get:

Corollary

Let $k \ge 1$ be a natural number. Consider a sequence $\mathbf{b} \in \mathbb{F}_2^{\mathbb{N}}$ such that $b_{2^k-2} = 0$, and $b_i = 1$ for $i < 2^k - 2$. Then

$$\mathcal{C}^{\mathbf{b}}(x) = p_{2^k - 1}(x).$$

In particular, it is a polynomial of degree $2^{k-1} - 1$ and so the sequence $C_n^{\mathbf{b}}$ is identically 0 for $n \ge 2^{k-1}$.

• What is the period of *L_n* modulo *pⁿ*?

• What is the period of *L_n* modulo *pⁿ*?

• What is the period of L_n modulo p^n ?

Conjecture (A. Postnikov)

The period of L_n modulo 3^{k+3} is exactly $2 \cdot 3^k$.

• What is the period of L_n modulo p^n ?

Conjecture (A. Postnikov)

The period of L_n modulo 3^{k+3} is exactly $2 \cdot 3^k$.

• What is the period of $C_n^{\mathbf{b}}$ modulo p^n ?

• What is the period of L_n modulo p^n ?

Conjecture (A. Postnikov)

The period of L_n modulo 3^{k+3} is exactly $2 \cdot 3^k$.

- What is the period of $C_n^{\mathbf{b}}$ modulo p^n ?
- Can we classify sequences for primes greater than 2?

MIT PRIMES

- MIT PRIMES
- Professor Alexander Postnikov

- MIT PRIMES
- Professor Alexander Postnikov
- Dmitry Kubrak

- MIT PRIMES
- Professor Alexander Postnikov
- Dmitry Kubrak
- My parents

QUESTIONS?