Coefficients of q-binomial coefficients modulo N

Dylan Pentland and Mentor Younhun Kim

MIT PRIMES

20 May 2017

What is a q-analogue?

A q-analogue is an extension of a combinatorial object based on a variable q reducing to the initial object at $q=1$.

Example

We can generalize n as a polynomial $[n]_{q}$ given by

$$
(\mathbf{n})_{q}=\frac{1-q^{n}}{1-q}=1+q+\ldots+q^{n-1}
$$

Note that at $q=1$ we obtain n.

Defining a q-binomial coefficient

Note that

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!} .
$$

This motivates defining $[\mathbf{n}]!_{q}=[n]_{q}[n-1]_{q} \cdots[1]_{q}$, and letting

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]!_{q}}{[n-k]!_{q}[k]!_{q}} .
$$

We can then say:

- ($\binom{n}{k}$ as the $q=1$ case
- $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is the number of k-dimensional subspaces of \mathbb{F}_{q}^{n}.

Defining $f_{k}(n)$

The original problem concerns looking at the coefficients of $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ modulo two.

Definition

For $R \in \mathbb{Z} / 2 \mathbb{Z}$, and $k \in \mathbb{N}$, we define

$$
f_{k}(n)=\#\left\{\alpha:\left[q^{\alpha}\right]\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \equiv R \quad(\bmod 2)\right\}
$$

The function counts the number of coefficients congruent to R modulo 2.

Example

Let's compute $f_{2}(5)$. We have

$$
\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q}=q^{6}+q^{5}+2 q^{4}+2 q^{3}+2 q^{2}+q+1
$$

Motivation

- Nice patterns in binomial coefficients $\binom{n}{k}$:

Figure 1: Pascal's triangle modulo two

- $\binom{n}{k}$ is the sum of the coefficients of $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$, or $\sum_{i \geq 0}\left[q^{i}\right]\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$, so we should expect some sort of pattern with coefficients of $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ as well.

We show that $f_{k}(n)$ is

- quasipolynomial - we can say

$$
f_{k}(n)=P_{i}(n) \text { when } n \equiv i \quad(\bmod Q)
$$

where $P_{i} \in \mathbb{Z}[x], Q \in \mathbb{N}$.

- We call Q a quasiperiod, and the degree is $\max _{i}\left(\operatorname{deg} P_{i}\right)$.
- Example: $\lfloor n / 2\rfloor$ is quasipolynomial of degree 1 and quasiperiod 2 .

We show that $f_{k}(n)$ is

- quasipolynomial - we can say

$$
f_{k}(n)=P_{i}(n) \text { when } n \equiv i \quad(\bmod Q)
$$

where $P_{i} \in \mathbb{Z}[x], Q \in \mathbb{N}$.

- We call Q a quasiperiod, and the degree is $\max _{i}\left(\operatorname{deg} P_{i}\right)$.
- Example: $\lfloor n / 2\rfloor$ is quasipolynomial of degree 1 and quasiperiod 2 .

Theorem

The function $f_{k}(n)$ counting coefficients congruent to some fixed residue modulo N in $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is quasipolynomial of degree one. That is, it can be written as for

$$
f_{k}(n)=\ell_{i}(n)
$$

for $n \equiv i\left(\bmod Q_{k}\right)$ and linear functions $\ell_{i}(n)$.

What do the slopes look like?

Figure 2: Slopes of f_{5} (counting odd coefficients of $\left[\begin{array}{l}n \\ 5\end{array}\right]_{q}$)

A combinatorial interpretation of $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$

Definition

A partition λ of n is a way to write n as a sum of positive integers $\lambda_{1}, \lambda_{2} \ldots$ where order does not matter. A part of λ is one of these integers λ_{i}.

A Young diagram is a way of representing a partition λ. For example, take the partition $1+2+4$ of 7 :

Figure 3: A partition of 7

A combinatorial interpretation of $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$

Theorem

We have

$$
\sum_{n \geq 0} p_{j \times k}(n) q^{n}=\left[\begin{array}{c}
j+k \\
k
\end{array}\right]_{q}
$$

where $p_{j \times k}(n)$ is the number of partitions whose Young diagrams fit in a $j \times k$ box.
We can use this to show that the coefficients of $\left[\begin{array}{c}j+k \\ k\end{array}\right]_{q}$ are symmetric.

Figure 4: The map $\lambda \mapsto \lambda^{\prime}$ on a 4 x 3 box

Coefficients of low degree terms in $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$

Fix $k=3$, and make a list of the first 10 terms of $\left[\begin{array}{l}n \\ 3\end{array}\right]_{q}$:

$$
\begin{aligned}
& {\left[\begin{array}{c}
5 \\
3
\end{array}\right]_{q}=\ldots+0 q^{9}+0 q^{8}+0 q^{7}+q^{6}+q^{5}+2 q^{4}+2 q^{3}+2 q^{2}+q+1} \\
& {\left[\begin{array}{c}
10 \\
3
\end{array}\right]_{q}=\ldots+10 q^{9}+9 q^{8}+8 q^{7}+7 q^{6}+5 q^{5}+4 q^{4}+3 q^{3}+2 q^{2}+q+1} \\
& {\left[\begin{array}{c}
15 \\
3
\end{array}\right]_{q}=\ldots+12 q^{9}+10 q^{8}+8 q^{7}+7 q^{6}+5 q^{5}+4 q^{4}+3 q^{3}+2 q^{2}+q+1} \\
& {\left[\begin{array}{c}
20 \\
3
\end{array}\right]_{q}=\ldots+12 q^{9}+10 q^{8}+8 q^{7}+7 q^{6}+5 q^{5}+4 q^{4}+3 q^{3}+2 q^{2}+q+1}
\end{aligned}
$$

Periodicity of $p_{\leq k}(n)$

Theorem (Nijenhuis \& Wilf, 1987)

- The function $p_{\leq k}(n)$ is purely periodic modulo N.
- This period is given by a function $\pi_{N}(k)$, which can be described explicitly.
- This result is crucial in proving the main theorem, and the actual quasiperiod Q_{k} examined is loosely based on $\pi_{N}(k)$.
- Roughly speaking, we can can use $p_{\leq k}(n)$ as a "basis" and exploit its periodicity modulo N to prove the main theorem.

What does the repeating sequence look like modulo N ?

Theorem

Let $q_{0}, q_{1}, \ldots q_{\pi_{N}(k)-1}$ be the repeating sequence of residues of $p_{\leq k}(n)$ modulo N, with $q_{i} \equiv p_{\leq k}(i)(\bmod N)$. Then:

- The last $\binom{k+1}{2}-1$ entries are zero.
- Ignoring the zero entries at the end, the residues exhibit symmetry.

Example

One example of this sequence for $N=2, k=3$ is

q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	q_{6}	q_{7}	q_{8}	q_{9}	q_{10}	q_{11}
1	1	0	1	0	1	1	0	0	0	0	0

The generating function

f_{k} being a degree one quasipolynomial allows for easy computation of the generating function:

Theorem

For a modulus $N \in \mathbb{N}$, we have

$$
F_{k}(x):=\sum_{n \geq 0} f_{k}(n) x^{n}=\frac{A(x)}{\left(1-x^{\pi_{N}^{\prime}(k)}\right)^{2}}
$$

where

$$
A(x)=\sum_{i \in \mathbb{Z} / Q_{k} \mathbb{Z}}\left(1-x^{Q_{k}}\right) c_{0}(i) x^{i}+c_{1}(i) x^{Q_{k}+i}
$$

- $c_{0}(i)$ is the constant term for residue i.
- $c_{1}(i)$ is the slope for residue i.

Future directions

- Prove that the numerator of $F_{k}(x)$ is usually symmetric. For example, when $N=2$ when we count the residue 1 we get

$$
F_{3}(x)=\frac{x^{15}+4 x^{14}+4 x^{13}+\cdots+4 x^{5}+4 x^{4}+x^{3}}{\Phi_{1}(x)^{2} \Phi_{2}(x)^{2} \Phi_{3}(x) \Phi_{4}(x)^{2} \Phi_{6}(x) \Phi_{12}(x)}
$$

Not always true, but true in many cases.

- Slopes appear to be bounded within a certain range. Is an asymptotic estimate possible?
- Is there a "nicer" formula for the generating function?

Thanks

- MIT PRIMES for making this possible
- YounHun Kim for his guidance
- Professor Stanley for suggesting the problem
- My parents

References

目 YH Harris Kwong, Minimum periods of partition-functions modulo m, Utilitas Mathematica 35 (1989), 3-8.

固 Albert Nijenhuis and Herbert S Wilf, Periodicities of partition functions and stirling numbers modulo p, Journal of Number Theory 25 (1987), no. 3, 308-312.
Richard P Stanley, Enumerative combinatorics, vol. 1, Springer, 1986.

