Pattern Avoidance Classes Invariant Under the Modified Foata-Strehl Action

Richard Zhou
Mentor: Yan Zhuang
May 20, 2017
MIT PRIMES Conference

Permutations

Definition

A permutation of a the set $\{1,2,3, \ldots, n\}$ is a length- n string that uses each number from 1 to n once.

Permutations

Definition

A permutation of a the set $\{1,2,3, \ldots, n\}$ is a length- n string that uses each number from 1 to n once.

Example

The string $\pi=67284135$ is a permutation of the set $\{1,2,3,4,5,6,7,8\}$.

Peaks and Valleys

- Imagine a permutation as a "mountain range".
- Each letter is either a peak, valley, or free letter.

Peaks and Valleys

- Imagine a permutation as a "mountain range".
- Each letter is either a peak, valley, or free letter.

Example

The " mountain range" representation of the permutation 67284135:

Pattern Avoidance

- Consider a "long" permutation, such as $\pi=23514$ and a shorter one, say $\sigma=132$.
- The 3-tuple of entries $(2,5,4)$ in π forms a pattern of type 132 .

Pattern Avoidance

- Consider a "long" permutation, such as $\pi=23514$ and a shorter one, say $\sigma=132$.
- The 3-tuple of entries $(2,5,4)$ in π forms a pattern of type 132 .
- We say the permutation π contains σ.

Pattern Avoidance

- Consider a "long" permutation, such as $\pi=23514$ and a shorter one, say $\sigma=132$.
- The 3-tuple of entries $(2,5,4)$ in π forms a pattern of type 132 .
- We say the permutation π contains σ.
- The permutation 15234 avoids the pattern 321.

Pattern Avoidance Classes

- Let π be a permutation of $[n]$ and let $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ be a set of patterns each of length at most n. We say that π avoids Σ if π avoids every pattern in Σ.

Pattern Avoidance Classes

- Let π be a permutation of $[n]$ and let $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ be a set of patterns each of length at most n. We say that π avoids Σ if π avoids every pattern in Σ.
- $A v_{n}(\Sigma)$ denotes the set of all length- n permutations p such that p avoids Σ.
- $\operatorname{Av}(\Sigma)$ denotes the set of all permutations that avoid Σ.

Valley Hopping

Definition

A valley-hop (formally known as the modified Foata-Strehl Action) $H_{j}(\sigma)$ is the permutation obtained by moving the free letter j in σ across the adjacent valleys to the nearest slope of the same height.

Example
 $H_{j}(\sigma)$ for $j=5$ and $\sigma=67284135$

Hop Equivalence Classes

- Valley-hopping naturally partitions the set of length- n permutations into equivalence classes:

Hop Equivalence Classes

- Valley-hopping naturally partitions the set of length- n permutations into equivalence classes:

Definition

Two permutations σ_{1} and σ_{2} of [n] are in the same hop equivalence class if there exists some sequence of valley-hops $H_{i_{1}}, H_{i_{2}}, \ldots, H_{i_{k}}$ such that $H_{i_{1}}\left(H_{i_{2}}\left(\ldots\left(H_{i_{k}}\left(\sigma_{1}\right)\right) \ldots\right)\right)=\sigma_{2}$. We let $\operatorname{Hop}(\sigma)$ denote the hop equivalence class of σ.

Hop Equivalence Classes

- Valley-hopping naturally partitions the set of length- n permutations into equivalence classes:

Definition

Two permutations σ_{1} and σ_{2} of [n] are in the same hop equivalence class if there exists some sequence of valley-hops $H_{i_{1}}, H_{i_{2}}, \ldots, H_{i_{k}}$ such that $H_{i_{1}}\left(H_{i_{2}}\left(\ldots\left(H_{i_{k}}\left(\sigma_{1}\right)\right) \ldots\right)\right)=\sigma_{2}$. We let $\operatorname{Hop}(\sigma)$ denote the hop equivalence class of σ.

```
Example
Hop(13542) ={13542, 13524, 31542, 31524}
```


Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that $A v_{n}(\Sigma)$ is invariant under valley-hopping if for any permutation $\pi \in A v_{n}(\Sigma)$, any valley-hop π^{\prime} of π is also in $A v_{n}(\Sigma)$.

Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that $A v_{n}(\Sigma)$ is invariant under valley-hopping if for any permutation $\pi \in A v_{n}(\Sigma)$, any valley-hop π^{\prime} of π is also in $A v_{n}(\Sigma)$.

- If $A v_{n}(\Sigma)$ is invariant under valley-hopping for all n, the distribution of peaks and valleys for permutations in $\operatorname{Av}(\Sigma)$ is well understood.

Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that $A v_{n}(\Sigma)$ is invariant under valley-hopping if for any permutation $\pi \in A v_{n}(\Sigma)$, any valley-hop π^{\prime} of π is also in $A v_{n}(\Sigma)$.

- If $A v_{n}(\Sigma)$ is invariant under valley-hopping for all n, the distribution of peaks and valleys for permutations in $\operatorname{Av}(\Sigma)$ is well understood.
- Our problem: Classify all pattern sets Σ such that $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping.

Singleton Patterns

- A set of patterns Σ is called singleton if $|\Sigma|=1$.

Singleton Patterns

- A set of patterns Σ is called singleton if $|\Sigma|=1$.
- Known that if $\Sigma=\{132\}$ or $\Sigma=\{231\}$, then $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping.

Singleton Patterns

- A set of patterns Σ is called singleton if $|\Sigma|=1$.
- Known that if $\Sigma=\{132\}$ or $\Sigma=\{231\}$, then $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping.
- We show that these are the only possible values for Σ :

Singleton Patterns

- A set of patterns Σ is called singleton if $|\Sigma|=1$.
- Known that if $\Sigma=\{132\}$ or $\Sigma=\{231\}$, then $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping.
- We show that these are the only possible values for Σ :

Proposition

Let Σ be a nontrivial singleton pattern set with $\operatorname{Av}(\Sigma)$ invariant under valley-hopping. Then $\Sigma=\{132\}$ or $\Sigma=\{231\}$.

Single Hop Equivalence Classes

- If Σ is a pattern set such that $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping and $\sigma \in \Sigma$, then $\operatorname{Hop}(\sigma) \subseteq \Sigma$.

Single Hop Equivalence Classes

- If Σ is a pattern set such that $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping and $\sigma \in \Sigma$, then $\operatorname{Hop}(\sigma) \subseteq \Sigma$.
- Only nontrivial Σ with more than one element for which $\operatorname{Av}(\Sigma)$ was known to be invariant under valley-hopping was $\Sigma=\{1423,1432\}$.

Single Hop Equivalence Classes

- If Σ is a pattern set such that $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping and $\sigma \in \Sigma$, then $\operatorname{Hop}(\sigma) \subseteq \Sigma$.
- Only nontrivial Σ with more than one element for which $\operatorname{Av}(\Sigma)$ was known to be invariant under valley-hopping was $\Sigma=\{1423,1432\}$.
- Can we classify all σ for which $\operatorname{Av}(\operatorname{Hop}(\sigma))$ is invariant under valley-hopping?

Classification for Single Hop Equivalence Classes

- Single hop equivalence classes invariant under valley-hopping have specific structure:

Classification for Single Hop Equivalence Classes

- Single hop equivalence classes invariant under valley-hopping have specific structure:

Proposition

Let σ be a permutation such that $\operatorname{Av}(\operatorname{Hop}(\sigma))$ is nontrivial and invariant under valley-hopping. Then σ has exactly one peak, which is its largest letter.

Classification for Single Hop Equivalence Classes

- Single hop equivalence classes invariant under valley-hopping have specific structure:

Proposition

Let σ be a permutation such that $\operatorname{Av}(\operatorname{Hop}(\sigma))$ is nontrivial and invariant under valley-hopping. Then σ has exactly one peak, which is its largest letter.

Proposition

There does not exist a position $i<|\sigma|$ for which i and $i+1$ are both free letters in σ.

Classification for Single Hop Equivalence Classes (Cont.)

- These properties place tight restrictions on σ :

Classification for Single Hop Equivalence Classes (Cont.)

- These properties place tight restrictions on σ :

Theorem

There are 14 nontrivial hop equivalence classes H for which $A v_{n}(H)$ is invariant under valley hopping.

Classification for Single Hop Equivalence Classes (Cont.)

- These properties place tight restrictions on σ :

Theorem

There are 14 nontrivial hop equivalence classes H for which $A v_{n}(H)$ is invariant under valley hopping.
$A v$ of the hop equivalence classes for following permutations are invariant under valley-hopping:

- 132, 231
- 1423, 2413, 3412, 1243, 1342, 2341
- 12534, 13524, 14523, 23514, 24513, 34512

Construction for General Pattern Sets

- For any permutation pattern σ of length n, there is a trivial pattern set Σ such that $A v_{n}(\Sigma)$ is invariant under valley-hopping. We would like to improve upon this:

Construction for General Pattern Sets

- For any permutation pattern σ of length n, there is a trivial pattern set Σ such that $A v_{n}(\Sigma)$ is invariant under valley-hopping. We would like to improve upon this:

Theorem

Let σ be a permutation pattern of length n. Then there exists a family of length- n permutation patterns Σ containing σ such that

$$
|\Sigma|<\frac{n!}{(n-p k(\sigma))!} 2^{n-2 p k(\sigma)-1}
$$

where $p k(\sigma)$ denotes the number of peaks in σ.

Construction for General Pattern Sets

- For any permutation pattern σ of length n, there is a trivial pattern set Σ such that $A v_{n}(\Sigma)$ is invariant under valley-hopping. We would like to improve upon this:

Theorem

Let σ be a permutation pattern of length n. Then there exists a family of length- n permutation patterns Σ containing σ such that

$$
|\Sigma|<\frac{n!}{(n-p k(\sigma))!} 2^{n-2 p k(\sigma)-1}
$$

where $p k(\sigma)$ denotes the number of peaks in σ.

- Improvement over trivial family size of n ! by factor of $\frac{(n-p k(\sigma))!}{2^{n-2 p k(\sigma)-1}}$.

Alternating Permutations

Definition

A permutation is strictly alternating if it has no free letters.

Example

1745263 is a strictly alternating permutation.

Families of Strictly Alternating Permutations

Definition

We call a permutation tall if every peak is greater than every valley.

Families of Strictly Alternating Permutations

Definition

We call a permutation tall if every peak is greater than every valley.

Theorem

Let Σ be a family of strictly alternating permutations with k peaks such that $\operatorname{Av}(\Sigma)$ invariant under valley-hopping. Then there exists some subset Π of Σ of size $(k-1)$! such that

- Every permutation in Π is tall
- Every permutation in Π has the same valleys
- For any $\pi \in \Pi$, the letter in position 2 is the smallest peak.

Future Work

- Classify all sets of strictly alternating permutations with $\operatorname{Av}(\Sigma)$ invariant under valley-hopping.
- Current strategy: start with singleton pattern set Σ and insert more elements until $\operatorname{Av}(\Sigma)$ is invariant under valley-hopping. Is there a more general way of generating Σ invariant under valley-hopping?

Acknowledgements

Many thanks to:

- Yan Zhuang, my mentor
- Dr. Tanya Khovanova
- My parents
- MIT PRIMES

