Pattern Avoidance Classes Invariant Under the Modified Foata-Strehl Action

Richard Zhou

Mentor: Yan Zhuang

May 20, 2017 MIT PRIMES Conference

Richard Zhou (Mentor: Yan Zhuang)

Definition

A permutation of a the set $\{1, 2, 3, ..., n\}$ is a length-*n* string that uses each number from 1 to *n* once.

Definition

A permutation of a the set $\{1, 2, 3, ..., n\}$ is a length-*n* string that uses each number from 1 to *n* once.

Example

The string $\pi = 67284135$ is a permutation of the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$.

Peaks and Valleys

- Imagine a permutation as a "mountain range".
- Each letter is either a peak, valley, or free letter.

Peaks and Valleys

- Imagine a permutation as a "mountain range".
- Each letter is either a peak, valley, or free letter.

Example

The "mountain range" representation of the permutation 67284135:

- Consider a "long" permutation, such as $\pi=23514$ and a shorter one, say $\sigma=132.$
- The 3-tuple of entries (2,5,4) in π forms a *pattern* of type 132.

- Consider a "long" permutation, such as $\pi = 23514$ and a shorter one, say $\sigma = 132$.
- The 3-tuple of entries (2,5,4) in π forms a *pattern* of type 132.
- We say the permutation π contains σ .

- Consider a "long" permutation, such as $\pi = 23514$ and a shorter one, say $\sigma = 132$.
- The 3-tuple of entries (2,5,4) in π forms a *pattern* of type 132.
- We say the permutation π contains σ .
- The permutation 15234 avoids the pattern 321.

• Let π be a permutation of [n] and let $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_m\}$ be a set of patterns each of length at most n. We say that π avoids Σ if π avoids every pattern in Σ .

- Let π be a permutation of [n] and let $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_m\}$ be a set of patterns each of length at most n. We say that π avoids Σ if π avoids every pattern in Σ .
- $Av_n(\Sigma)$ denotes the set of all length-*n* permutations *p* such that *p* avoids Σ .
- $Av(\Sigma)$ denotes the set of all permutations that avoid Σ .

Valley Hopping

Definition

A valley-hop (formally known as the modified Foata-Strehl Action) $H_j(\sigma)$ is the permutation obtained by moving the free letter j in σ across the adjacent valleys to the nearest slope of the same height.

Example

 $H_j(\sigma)$ for j = 5 and $\sigma = 67284135$

Hop Equivalence Classes

• Valley-hopping naturally partitions the set of length-*n* permutations into equivalence classes:

• Valley-hopping naturally partitions the set of length-*n* permutations into equivalence classes:

Definition

Two permutations σ_1 and σ_2 of [n] are in the same hop equivalence class if there exists some sequence of valley-hops $H_{i_1}, H_{i_2}, \ldots, H_{i_k}$ such that $H_{i_1}(H_{i_2}(\ldots(H_{i_k}(\sigma_1))\ldots)) = \sigma_2$. We let $Hop(\sigma)$ denote the hop equivalence class of σ . • Valley-hopping naturally partitions the set of length-*n* permutations into equivalence classes:

Definition

Two permutations σ_1 and σ_2 of [n] are in the same hop equivalence class if there exists some sequence of valley-hops $H_{i_1}, H_{i_2}, \ldots, H_{i_k}$ such that $H_{i_1}(H_{i_2}(\ldots(H_{i_k}(\sigma_1))\ldots)) = \sigma_2$. We let $Hop(\sigma)$ denote the hop equivalence class of σ .

Example

 $Hop(13542) = \{13542, 13524, 31542, 31524\}$

Valley Hopping and Pattern Avoidance Classes

Definition

Let Σ be a set of patterns. We say that $Av_n(\Sigma)$ is invariant under valley-hopping if for any permutation $\pi \in Av_n(\Sigma)$, any valley-hop π' of π is also in $Av_n(\Sigma)$.

Definition

Let Σ be a set of patterns. We say that $Av_n(\Sigma)$ is invariant under valley-hopping if for any permutation $\pi \in Av_n(\Sigma)$, any valley-hop π' of π is also in $Av_n(\Sigma)$.

• If $Av_n(\Sigma)$ is invariant under valley-hopping for all n, the distribution of peaks and valleys for permutations in $Av(\Sigma)$ is well understood.

Definition

Let Σ be a set of patterns. We say that $Av_n(\Sigma)$ is invariant under valley-hopping if for any permutation $\pi \in Av_n(\Sigma)$, any valley-hop π' of π is also in $Av_n(\Sigma)$.

- If $Av_n(\Sigma)$ is invariant under valley-hopping for all n, the distribution of peaks and valleys for permutations in $Av(\Sigma)$ is well understood.
- Our problem: Classify all pattern sets Σ such that Av(Σ) is invariant under valley-hopping.

• A set of patterns Σ is called singleton if $|\Sigma|=1.$

- A set of patterns Σ is called singleton if $|\Sigma|=1.$
- Known that if $\Sigma = \{132\}$ or $\Sigma = \{231\}$, then $Av(\Sigma)$ is invariant under valley-hopping.

- A set of patterns Σ is called singleton if $|\Sigma| = 1$.
- Known that if $\Sigma = \{132\}$ or $\Sigma = \{231\}$, then $Av(\Sigma)$ is invariant under valley-hopping.
- We show that these are the only possible values for Σ:

- A set of patterns Σ is called singleton if $|\Sigma| = 1$.
- Known that if $\Sigma = \{132\}$ or $\Sigma = \{231\}$, then $Av(\Sigma)$ is invariant under valley-hopping.
- We show that these are the only possible values for Σ:

Proposition

Let Σ be a nontrivial singleton pattern set with $Av(\Sigma)$ invariant under valley-hopping. Then $\Sigma = \{132\}$ or $\Sigma = \{231\}$.

 If Σ is a pattern set such that Av(Σ) is invariant under valley-hopping and σ ∈ Σ, then Hop(σ) ⊆ Σ.

- If Σ is a pattern set such that Av(Σ) is invariant under valley-hopping and σ ∈ Σ, then Hop(σ) ⊆ Σ.
- Only nontrivial Σ with more than one element for which Av(Σ) was known to be invariant under valley-hopping was Σ = {1423, 1432}.

- If Σ is a pattern set such that Av(Σ) is invariant under valley-hopping and σ ∈ Σ, then Hop(σ) ⊆ Σ.
- Only nontrivial Σ with more than one element for which Av(Σ) was known to be invariant under valley-hopping was Σ = {1423, 1432}.
- Can we classify all σ for which $Av(Hop(\sigma))$ is invariant under valley-hopping?

Classification for Single Hop Equivalence Classes

• Single hop equivalence classes invariant under valley-hopping have specific structure:

Classification for Single Hop Equivalence Classes

• Single hop equivalence classes invariant under valley-hopping have specific structure:

Proposition

Let σ be a permutation such that $Av(Hop(\sigma))$ is nontrivial and invariant under valley-hopping. Then σ has exactly one peak, which is its largest letter.

Classification for Single Hop Equivalence Classes

• Single hop equivalence classes invariant under valley-hopping have specific structure:

Proposition

Let σ be a permutation such that $Av(Hop(\sigma))$ is nontrivial and invariant under valley-hopping. Then σ has exactly one peak, which is its largest letter.

Proposition

There does not exist a position $i < |\sigma|$ for which i and i + 1 are both free letters in σ .

Classification for Single Hop Equivalence Classes (Cont.)

• These properties place tight restrictions on σ :

Classification for Single Hop Equivalence Classes (Cont.)

• These properties place tight restrictions on σ :

Theorem

There are 14 nontrivial hop equivalence classes H for which $Av_n(H)$ is invariant under valley hopping.

Classification for Single Hop Equivalence Classes (Cont.)

• These properties place tight restrictions on σ :

Theorem

There are 14 nontrivial hop equivalence classes H for which $Av_n(H)$ is invariant under valley hopping.

Av of the hop equivalence classes for following permutations are invariant under valley-hopping:

- 132, 231
- 1423, 2413, 3412, 1243, 1342, 2341
- 12534, 13524, 14523, 23514, 24513, 34512

Construction for General Pattern Sets

• For any permutation pattern σ of length *n*, there is a trivial pattern set Σ such that $Av_n(\Sigma)$ is invariant under valley-hopping. We would like to improve upon this:

Construction for General Pattern Sets

 For any permutation pattern σ of length n, there is a trivial pattern set Σ such that Av_n(Σ) is invariant under valley-hopping. We would like to improve upon this:

Theorem

Let σ be a permutation pattern of length *n*. Then there exists a family of length-*n* permutation patterns Σ containing σ such that

$$|\Sigma| < \frac{n!}{(n-pk(\sigma))!} 2^{n-2pk(\sigma)-1}$$

where $pk(\sigma)$ denotes the number of peaks in σ .

Construction for General Pattern Sets

 For any permutation pattern σ of length n, there is a trivial pattern set Σ such that Av_n(Σ) is invariant under valley-hopping. We would like to improve upon this:

Theorem

Let σ be a permutation pattern of length *n*. Then there exists a family of length-*n* permutation patterns Σ containing σ such that

$$|\Sigma| < \frac{n!}{(n-pk(\sigma))!} 2^{n-2pk(\sigma)-1}$$

where $pk(\sigma)$ denotes the number of peaks in σ .

• Improvement over trivial family size of n! by factor of $\frac{(n-pk(\sigma))!}{2^{n-2pk(\sigma)-1}}$.

Alternating Permutations

Definition

A permutation is *strictly alternating* if it has no free letters.

Example

1745263 is a strictly alternating permutation.

Families of Strictly Alternating Permutations

Definition

We call a permutation *tall* if every peak is greater than every valley.

Families of Strictly Alternating Permutations

Definition

We call a permutation *tall* if every peak is greater than every valley.

Theorem

Let Σ be a family of strictly alternating permutations with k peaks such that $Av(\Sigma)$ invariant under valley-hopping. Then there exists some subset Π of Σ of size (k - 1)! such that

- Every permutation in Π is tall
- Every permutation in Π has the same valleys
- For any $\pi \in \Pi$, the letter in position 2 is the smallest peak.

- Classify all sets of strictly alternating permutations with $Av(\Sigma)$ invariant under valley-hopping.
- Current strategy: start with singleton pattern set Σ and insert more elements until Av(Σ) is invariant under valley-hopping. Is there a more general way of generating Σ invariant under valley-hopping?

Many thanks to:

- Yan Zhuang, my mentor
- Dr. Tanya Khovanova
- My parents
- MIT PRIMES