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Introduction to Lie Algebras

Lie Algebras

Vector space g over C, Lie Bracket [·, ·] : g× g→ g

Bilinear: [x + y , z ] = [x , z ] + [y , z ], α[x , y ] = [αx , y ]
Anticommutative: [x , y ] = −[y , x ]
Jacobi identity [x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0

Example

gln(C), n × n complex matrices

[a, b] = ab − ba

Example

Abelian Lie Algebras: g = V , a vector space, with [·, ·] = 0
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Introduction to Lie Algebras

Examples of Lie Algebras

Example

sl2(C): 2× 2 complex matrices with trace 0.

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
with

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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Introduction to Lie Algebras

More Examples of Lie Algebras

Example

Heisenberg Algebra:

x =

0 1 0
0 0 0
0 0 0

 , y =

0 0 0
0 0 1
0 0 0

 , z =

0 0 1
0 0 0
0 0 0


with

[x , y ] = z , [x , z ] = 0, [y , z ] = 0

Jacobi: [a, [b, c]] + [c , [a, b]] + [b, [c, a]] = 0
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Representation Theory

Motivation For Representation Theory

Goal: understand Lie algebras, specifically the Virasoro, through linear
algebra, i.e., matrices.

Main Tool: Representation Theory.
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Representation Theory

Representations of Lie Algebras

Definition

An n-dimensional representation of g is an n-dimensional vector
space V = Cn and a map ρ : g→ gln(C) such that:

ρ([x , y ]) = ρ(x)ρ(y)− ρ(y)ρ(x).

Here:
1 [x , y ] is the Lie bracket of x and y in g
2 ρ(x) and ρ(y) are just n × n matrices and ρ(x)ρ(y) refers to matrix

multiplication.

We think of the matrices ρ(x) and ρ(y) as operators on V since n× n
matrices act on Cn.
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Representation Theory

Examples of Representations

Example

Trivial representation: Here, V is any vector space and ρ(x) is the 0
matrix for all x ∈ g.

Example

One dimensional representations: If V = C, then gl1(C) = C. So a choice
of a representation is just a choice of scalar for each x ∈ g such that
ρ([x , y ]) = 0 for each x , y ∈ g.
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Representation Theory

SL2

Example

sl2(C) has a natural representation on C2 where e, f , h are represented by
the defining matrices:

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
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Representation Theory

Irreducible Representations

Irreducible representations are building blocks for other
representations and are hence the first things to study.

A subrepresentation is a vector subspace U ⊆ Cn invariant under all
matrices that come from the Lie algebra g.

V is irreducible if V ’s only subrepresentations are 0 and V .
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Representation Theory

The Virasoro Algebra

As a vector space, the Virasoro algebra has basis

· · · L−2, L−1, L0, L1, L2, · · · ,

along with a central element c

Lie bracket satisfies [Ln, c] = 0 and

[Lm, Ln] = (m − n)Lm+n + c · m
3 −m

12
· δm+n,0
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Representation Theory

Irreducibles for Virasoro and Singular Vectors

Singular Vectors: Given a representation V for Virasoro, a vector v
is singular if

1 There exist some complex numbers h, c such that

L0(v) = hv , c(v) = cv .

2 For every k > 0, Lk(v) = 0.

The pair (h, c) is called the weight of the singular vector.

Irreducibles for Virasoro are labelled by weights (h, c). For each
irreducible representation V , there is a unique singular vector v ∈ V
and its weight is the same as the label for V . This singular vector is
called the highest weight vector of V .
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Representation Theory

Verma Modules

How to construct irreducible representations of given highest weight?
Verma modules.

Fix a highest weight (h, c). The Verma module of this highest weight
is an infinite dimensional representation of Virasoro.

Basis: Ordered monomials in the Lk for k < 0 of the form Laii1 · · · L
am
im

,
where the ij are nondecreasing negative integers and ai are
non-negative integers.

Example: L−2L−1 is a basis element but L−1L−2 is not.

Vacuum Vector: 1 is a basis element as well, since we allow the
exponents to be 0. We call this the vacuum vector.
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Representation Theory

Verma modules contd

The action of the Virasoro is described as follows:
1 On the vacuum vector 1: L0 acts by h and c by c . Lk kills 1 for k > 0.

L−k(1) = L−k .
2 On other basis vectors, we use the commutation relations of Virasoro

to put
LkL

a1
i1
· · · Lamim

in increasing order.
3 We may have some terms left over with L0, c of Lk > 0 on the right. In

the first two cases, we just multiply by h, c . In the last case, we set it
equal to 0.

Key Fact: The irreducible assoc. to (h, c) is the quotient of the
Verma module assoc. to (h, c) by all proper subrepresentations.
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Representation Theory

Example of Computation

Recall : [Lm, Ln] = (m − n)Lm+n + c · m
3 −m

12
· δm+n,0

L1 · (L−3L−1) = L−3L1L−1 + [L1, L−3]L−1

= L−3L1L−1 + 4L−2L−1

= L−3L−1L1 + L−3[L1, L−1] + 4L−2L−1

= L−3L−1L1 + 2L−3L0 + 4L−2L−1

= 0 + 2hL−3 + 4L−2L−1.
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Representation Theory

Irreducible Factors of Vermas

Every Verma module V has a composition series of submodules

V = V0 ) V1 ) · · · ) Vn = 0

such that each subquotient Vi/Vi+1 is irreducible.

These irreducible subquotients are unique up to reordering and are
called the composition factors or irreducible factors of V .

Irreducible factors are in bijection with singular vectors inside V .

The number of times the irreducible assoc. to (h, c) appears as a
composition factor in V is the number of independent singular vectors
in V of weight (h, c).
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Representation Theory

Computing singular vectors

Goal: Understand composition series of Vermas by computing all
singular vectors.

Method:
1 We can write each raising operator Lk as a matrix in the given basis for

the Verma module. The Verma modules are graded by degree of the
basis monomials and Lk raises degree by k . Focusing degree by degree
gives finite matrices.

2 Compute the null space of each matrix via computer algebra software.
3 Compute the intersection of the nullspaces. This intersection is the

space of all singular vectors.
4 Compute the weights of the singular vectors.
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Representation Theory

Current Progress

Have code for computing matrices for Lk>0 for degree of at most 15

For example, when the degree is 2, the matrix for the action of L1 is
0 2h 0 0
0 0 4h + 2 3
0 0 0 0
0 0 0 0

which encodes

L1L0 = 0

L1L−1 = 2h

L1L−1L−1 = (2 + 4h)L−1

L1L−2 = 3L−1.

Can compute null spaces

Difficulty: intersecting these null spaces to find singular vectors
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Representation Theory

Future Research

Ultimate goal: do the above for more complicated q-deformed
Heisenberg-Virasoro algebra.

Main problem: commutation relations are much more involved than in
the Virasoro algebra. Hence, the algorithm is much slower. The only
commutation relation that fits on the slide is

[Ta,Ub] =
∞∑
k=1

ck

(
qkUb−kTa+k − Ta−kUb+k

)
.
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Representation Theory
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