Low Dimensional d-Algebras

Aaron Kaufer
Mentor: Lucas Mason-Brown

May 202017

PRIMES Conference

What is an Algebra?

What is an Algebra?

Definition

An Algebra is a set A together with three operations:

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.
Here, a scalar means an element of a field $F . F$ could be:

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.
Here, a scalar means an element of a field $F . F$ could be:

- \mathbb{Q} : The rational numbers

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(3 Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.
Here, a scalar means an element of a field $F . F$ could be:

- \mathbb{Q} : The rational numbers
- \mathbb{R} : The real numbers

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(3 Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.
Here, a scalar means an element of a field $F . F$ could be:

- \mathbb{Q} : The rational numbers
- \mathbb{R} : The real numbers
- \mathbb{C} : The complex numbers

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(3 Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.
Here, a scalar means an element of a field $F . F$ could be:

- \mathbb{Q} : The rational numbers
- \mathbb{R} : The real numbers
- \mathbb{C} : The complex numbers
- $\mathbb{Z} / p \mathbb{Z}$: The integers modulo a prime.

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(3 Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.
Here, a scalar means an element of a field $F . F$ could be:

- \mathbb{Q} : The rational numbers
- \mathbb{R} : The real numbers
- \mathbb{C} : The complex numbers
- $\mathbb{Z} / p \mathbb{Z}$: The integers modulo a prime.

If F is the field of scalars for an algebra A, then we say that A is an algebra over F.

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

For $a, b, c \in A$ and k is a scalar, we must have:

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$
- $(a+b)+c=a+(b+c)$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

- $0 \in A$ and $1 \in A$

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

- $0 \in A$ and $1 \in A$

For $a, b, c \in A$ and k is a scalar, we

- $0+a=a$ must have:
- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

- $0 \in A$ and $1 \in A$

For $a, b, c \in A$ and k is a scalar, we must have:

- $0+a=a$
- $1 \cdot a=a$
- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

- $0 \in A$ and $1 \in A$
- $0+a=a$
- $1 \cdot a=a$
- $a+(-a)=0$
- $(a+b)+c=a+(b+c)$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

- $0 \in A$ and $1 \in A$

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $0+a=a$
- $1 \cdot a=a$
- $a+(-a)=0$
- $(a+b) \cdot c=a \cdot c+b \cdot c$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

- $0 \in A$ and $1 \in A$

For $a, b, c \in A$ and k is a scalar, we must have:

- $a+b=b+a$
- $(a+b)+c=a+(b+c)$
- $0+a=a$
- $1 \cdot a=a$
- $a+(-a)=0$
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- $(a+b) \cdot c=a \cdot c+b \cdot c$
- $a \cdot(b+c)=a \cdot b+a \cdot c$

What is an Algebra?

Definition

An Algebra is a set A together with three operations:
(1) Addition/Subtraction: If $a, b \in A$, then $a+b \in A$ and $a-b \in A$.
(2) Multiplication: If $a, b \in A$, then $a \cdot b \in A$.
(Scalar multiplication: If $a \in A$ and k is a scalar, then $k a \in A$.

$$
\begin{aligned}
& \text { - } 0 \in A \text { and } 1 \in A \\
& \text { - } 0+a=a \\
& \text { - } 1 \cdot a=a \\
& \text { - } a+(-a)=0 \\
& \text { - }(a+b) \cdot c=a \cdot c+b \cdot c \\
& \text { - } a \cdot(b+c)=a \cdot b+a \cdot c)=(k a) \cdot b=a \cdot(k b)
\end{aligned}
$$

Examples of Algebras

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$
- Multiplication: $(1+2 i) \cdot(2+6 i)=-10+10 i$

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$
- Multiplication: $(1+2 i) \cdot(2+6 i)=-10+10 i$
- Scalar Multiplication: $7(1+2 i)=7+14 i$

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$
- Multiplication: $(1+2 i) \cdot(2+6 i)=-10+10 i$
- Scalar Multiplication: $7(1+2 i)=7+14 i$
- Polynomials over a field form an algebra. For example:

$$
\mathbb{Q}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{0}, \ldots, a_{n} \in \mathbb{Q}\right\}
$$

is an algebra with field of scalars \mathbb{Q}.

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$
- Multiplication: $(1+2 i) \cdot(2+6 i)=-10+10 i$
- Scalar Multiplication: $7(1+2 i)=7+14 i$
- Polynomials over a field form an algebra. For example:

$$
\mathbb{Q}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{0}, \ldots, a_{n} \in \mathbb{Q}\right\}
$$

is an algebra with field of scalars \mathbb{Q}.

- Addition: $\left(3 x^{2}+1\right)+(2 x+5)=3 x^{2}+2 x+6$

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$
- Multiplication: $(1+2 i) \cdot(2+6 i)=-10+10 i$
- Scalar Multiplication: $7(1+2 i)=7+14 i$
- Polynomials over a field form an algebra. For example:

$$
\mathbb{Q}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{0}, \ldots, a_{n} \in \mathbb{Q}\right\}
$$

is an algebra with field of scalars \mathbb{Q}.

- Addition: $\left(3 x^{2}+1\right)+(2 x+5)=3 x^{2}+2 x+6$
- Multiplication: $\left(3 x^{2}+1\right) \cdot(2 x+5)=6 x^{3}+15 x^{2}+2 x+5$

Examples of Algebras

- The complex numbers \mathbb{C} is an algebra with field of scalars \mathbb{R}.
- Addition: $(1+2 i)+(2+6 i)=3+9 i$
- Multiplication: $(1+2 i) \cdot(2+6 i)=-10+10 i$
- Scalar Multiplication: $7(1+2 i)=7+14 i$
- Polynomials over a field form an algebra. For example:

$$
\mathbb{Q}[x]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \mid a_{0}, \ldots, a_{n} \in \mathbb{Q}\right\}
$$

is an algebra with field of scalars \mathbb{Q}.

- Addition: $\left(3 x^{2}+1\right)+(2 x+5)=3 x^{2}+2 x+6$
- Multiplication: $\left(3 x^{2}+1\right) \cdot(2 x+5)=6 x^{3}+15 x^{2}+2 x+5$
- Scalar multiplication: $\frac{1}{3}(2 x+5)=\frac{2}{3} x+\frac{5}{3}$

Commutative Algebras

Commutative Algebras

- All three algebras from the previous slide had the property that multiplication was commutative. This means that the equation:

$$
a \cdot b=b \cdot a \text { for all } a, b \in A
$$

is true when $A=\mathbb{C}$ or $A=\mathbb{Q}[x]$ (or any other polynomial algebra).

Commutative Algebras

- All three algebras from the previous slide had the property that multiplication was commutative. This means that the equation:

$$
a \cdot b=b \cdot a \text { for all } a, b \in A
$$

is true when $A=\mathbb{C}$ or $A=\mathbb{Q}[x]$ (or any other polynomial algebra).

Definition

An algebra A is called a Commutative Algebra if:

$$
a \cdot b=b \cdot a
$$

for all $a, b \in A$.

Noncommutative Algebras

Not all algebras are commutative!

Noncommutative Algebras

Not all algebras are commutative!

- Consider:

$$
M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

We have our familiar operations:

Noncommutative Algebras

Not all algebras are commutative!

- Consider:

$$
M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

We have our familiar operations:

- Addition: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)+\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{ll}4 & 8 \\ 7 & 7\end{array}\right)$

Noncommutative Algebras

Not all algebras are commutative!

- Consider:

$$
M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

We have our familiar operations:

- Addition: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)+\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{ll}4 & 8 \\ 7 & 7\end{array}\right)$
- Multiplication: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right) \cdot\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{cc}59 & 36 \\ 13 & 9\end{array}\right)$

Noncommutative Algebras

Not all algebras are commutative!

- Consider:

$$
M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

We have our familiar operations:

- Addition: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)+\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{ll}4 & 8 \\ 7 & 7\end{array}\right)$
- Multiplication: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right) \cdot\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{cc}59 & 36 \\ 13 & 9\end{array}\right)$
- Scalar Multiplication: $6\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}6 & 42 \\ -6 & 12\end{array}\right)$

Noncommutative Algebras

Not all algebras are commutative!

- Consider:

$$
M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

We have our familiar operations:

- Addition: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)+\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{ll}4 & 8 \\ 7 & 7\end{array}\right)$
- Multiplication: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right) \cdot\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{cc}59 & 36 \\ 13 & 9\end{array}\right)$
- Scalar Multiplication: $6\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}6 & 42 \\ -6 & 12\end{array}\right)$
- To see that $M_{2,2}(\mathbb{R})$ is not commutative, set $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.

Noncommutative Algebras

Not all algebras are commutative!

- Consider:

$$
M_{2,2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

We have our familiar operations:

- Addition: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)+\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{ll}4 & 8 \\ 7 & 7\end{array}\right)$
- Multiplication: $\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right) \cdot\left(\begin{array}{ll}3 & 1 \\ 8 & 5\end{array}\right)=\left(\begin{array}{cc}59 & 36 \\ 13 & 9\end{array}\right)$
- Scalar Multiplication: $6\left(\begin{array}{cc}1 & 7 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}6 & 42 \\ -6 & 12\end{array}\right)$
- To see that $M_{2,2}(\mathbb{R})$ is not commutative, set $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then:

$$
A \cdot B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \text { but } B \cdot A=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Dimension

Dimension

Suppose A is an algebra over F.

Dimension

Suppose A is an algebra over F.

Definition

Suppose a_{1}, \ldots, a_{n} are all elements of A. A linear combination of a_{1}, \ldots, a_{n} is a finite sum of the form:

$$
k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{n} a_{n}
$$

where k_{1}, \ldots, k_{n} are all scalars.

Dimension

Suppose A is an algebra over F.

Definition

Suppose a_{1}, \ldots, a_{n} are all elements of A. A linear combination of a_{1}, \ldots, a_{n} is a finite sum of the form:

$$
k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{n} a_{n}
$$

where k_{1}, \ldots, k_{n} are all scalars.
For example, set $A=M_{2,2}(\mathbb{R})$ and $F=\mathbb{R}$. Then the matrix $\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)$ is a linear combination of the matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ because:

$$
\left(\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right)=5\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+2\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Dimension

Dimension

- As a matter of fact, every matrix in $M_{2,2}(\mathbb{R})$ is a linear combination of the matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

because:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Dimension

- As a matter of fact, every matrix in $M_{2,2}(\mathbb{R})$ is a linear combination of the matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

because:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

- Likewise, every element of the algebra \mathbb{C} is a linear combination of the numbers 1 and i, because:

$$
a+b i=a(1)+b(i)
$$

Dimension

Suppose A is an algebra over F.

Definition

A set of elements $a_{1}, \ldots, a_{n} \in A$ is said to span A if every element of A can be written as a linear combination of a_{1}, \ldots, a_{n}.

Dimension

Suppose A is an algebra over F.

Definition

A set of elements $a_{1}, \ldots, a_{n} \in A$ is said to span A if every element of A can be written as a linear combination of a_{1}, \ldots, a_{n}.

For example:

- 1 and i span \mathbb{C}.

Dimension

Suppose A is an algebra over F.

Definition

A set of elements $a_{1}, \ldots, a_{n} \in A$ is said to span A if every element of A can be written as a linear combination of a_{1}, \ldots, a_{n}.

For example:

- 1 and i span \mathbb{C}.
- $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \operatorname{span} M_{2,2}(\mathbb{R})$

Dimension

Suppose A is an algebra over F.

Definition

A set of elements $a_{1}, \ldots, a_{n} \in A$ is said to span A if every element of A can be written as a linear combination of a_{1}, \ldots, a_{n}.

For example:

- 1 and i span \mathbb{C}.
- $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \operatorname{span} M_{2,2}(\mathbb{R})$

Definition

The dimension of A is the minimum number of elements in A needed to span A. The dimension of A is denoted $\operatorname{dim}(A)$.

Dimension

Suppose A is an algebra over F.

Definition

A set of elements $a_{1}, \ldots, a_{n} \in A$ is said to span A if every element of A can be written as a linear combination of a_{1}, \ldots, a_{n}.

For example:

- 1 and i span \mathbb{C}.
- $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \operatorname{span} M_{2,2}(\mathbb{R})$

Definition

The dimension of A is the minimum number of elements in A needed to span A. The dimension of A is denoted $\operatorname{dim}(A)$.

For example:

- $\operatorname{dim}(\mathbb{C})=2$

Dimension

Suppose A is an algebra over F.

Definition

A set of elements $a_{1}, \ldots, a_{n} \in A$ is said to span A if every element of A can be written as a linear combination of a_{1}, \ldots, a_{n}.

For example:

- 1 and i span \mathbb{C}.
- $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \operatorname{span} M_{2,2}(\mathbb{R})$

Definition

The dimension of A is the minimum number of elements in A needed to span A. The dimension of A is denoted $\operatorname{dim}(A)$.

For example:

- $\operatorname{dim}(\mathbb{C})=2$
- $\operatorname{dim}\left(M_{2,2}(\mathbb{R})\right)=4$

What is a d-Algebra?

What is a d-Algebra?

Definition

A d-Algebra over a field F is a regular algebra A together with a function d, called the "differential" of A, which satisfies the properties:

What is a d-Algebra?

Definition

A d-Algebra over a field F is a regular algebra A together with a function d, called the "differential" of A, which satisfies the properties:
(1) d is linear:

$$
d(a+b)=d(a)+d(b) \text { and } d(k a)=k d(a)
$$

whenever $a, b \in A$ and $k \in F$.

What is a d-Algebra?

Definition

A d-Algebra over a field F is a regular algebra A together with a function d, called the "differential" of A, which satisfies the properties:
(1) d is linear:

$$
d(a+b)=d(a)+d(b) \text { and } d(k a)=k d(a)
$$

whenever $a, b \in A$ and $k \in F$.
(2) d is a derivation:
for all $a, b \in A . \quad d(a \cdot b)=d(a) \cdot b+a \cdot d(b)$

What is a d-Algebra?

Definition

A d-Algebra over a field F is a regular algebra A together with a function d, called the "differential" of A, which satisfies the properties:
(1) d is linear:

$$
d(a+b)=d(a)+d(b) \text { and } d(k a)=k d(a)
$$

whenever $a, b \in A$ and $k \in F$.
(2) d is a derivation:

$$
d(a \cdot b)=d(a) \cdot b+a \cdot d(b)
$$

(3) $d^{2}=0$:

$$
d(d(a))=0 \text { for all } a \in A
$$

What is a d-Algebra?

Definition

A d-Algebra over a field F is a regular algebra A together with a function d, called the "differential" of A, which satisfies the properties:
(1) d is linear:

$$
d(a+b)=d(a)+d(b) \text { and } d(k a)=k d(a)
$$

whenever $a, b \in A$ and $k \in F$.
(2) d is a derivation:
for all $a, b \in A$.

$$
d(a \cdot b)=d(a) \cdot b+a \cdot d(b)
$$

(3) $d^{2}=0$:

$$
d(d(a))=0 \text { for all } a \in A
$$

(1) d-commutativity:

$$
a \cdot b=b \cdot a+d(b) \cdot d(a)
$$

Examples of d-algebras

Examples of d-algebras

- Trivial d-algebra:

Examples of d-algebras

- Trivial d-algebra:
- Suppose we are given a commutative algebra A over a field F.

Examples of d-algebras

- Trivial d-algebra:
- Suppose we are given a commutative algebra A over a field F.
- Then we can turn A into a d-algebra by setting $d(a)=0$ for all A.

Examples of d-algebras

- Trivial d-algebra:
- Suppose we are given a commutative algebra A over a field F.
- Then we can turn A into a d-algebra by setting $d(a)=0$ for all A.
- This is boring.

Examples of d-algebras

- Trivial d-algebra:
- Suppose we are given a commutative algebra A over a field F.
- Then we can turn A into a d-algebra by setting $d(a)=0$ for all A.
- This is boring.
- We are interested in noncommutative d-algebras.

Examples of d-algebras

- Trivial d-algebra:
- Suppose we are given a commutative algebra A over a field F.
- Then we can turn A into a d-algebra by setting $d(a)=0$ for all A.
- This is boring.
- We are interested in noncommutative d-algebras.

Quick sidenote: we also must assume that F is algebraically closed and $\operatorname{char}(F)=2$.

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No
- Dimension 5:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No
- Dimension 5: No

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No
- Dimension 5: No
- Dimension 6:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No
- Dimension 5: No
- Dimension 6: No

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No
- Dimension 5: No
- Dimension 6: No
- Dimension 7:

Noncommutative d-Algebras

- Question: Can we find any noncommutative d-algebras?
- Solution Attempt: Try looking at d-algebras of small dimension.
- Dimension 1: No
- Dimension 2: No
- Dimension 3: No
- Dimension 4: No
- Dimension 5: No
- Dimension 6: No
- Dimension 7: Yes!

7-dimensional d-Algebras

- We can actually construct a 7 -dimensional d-Algebra.

7-dimensional d-Algebras

- We can actually construct a 7 -dimensional d-Algebra.
- Our algebra A has basis (over F) $\left\{1, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}$, and we define:

$$
\begin{gathered}
d(1)=d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=0 \\
d\left(w_{1}\right)=v_{1} \quad \text { and } \quad d\left(w_{2}\right)=v_{2} \quad \text { and } \quad d\left(w_{3}\right)=v_{3}
\end{gathered}
$$

7-dimensional d-Algebras

- We can actually construct a 7 -dimensional d-Algebra.
- Our algebra A has basis (over F) $\left\{1, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right\}$, and we define:

$$
\begin{gathered}
d(1)=d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=0 \\
d\left(w_{1}\right)=v_{1} \quad \text { and } \quad d\left(w_{2}\right)=v_{2} \quad \text { and } \quad d\left(w_{3}\right)=v_{3}
\end{gathered}
$$

- It has multiplication table:

\cdot	v_{1}	v_{2}	v_{3}	w_{1}	w_{2}	w_{3}
v_{1}	0	v_{3}	0	0	w_{3}	0
v_{2}	v_{3}	0	0	w_{3}	0	0
v_{3}	0	0	0	0	0	0
w_{1}	0	w_{3}	0	0	v_{3}	0
w_{2}	w_{3}	0	0	0	0	0
w_{3}	0	0	0	0	0	0

- A is noncommutative because $w_{1} \cdot w_{2}=v_{3}$, but $w_{2} \cdot w_{1}=0$.

7-dimensional d-Algebras

7-dimensional d-Algebras

- Question: Are there any other (up to isomorphism) 7-dimensional (noncommutative) d-algebras?

7-dimensional d-Algebras

- Question: Are there any other (up to isomorphism) 7-dimensional (noncommutative) d-algebras?
- For reference, there are infinitely many (up to isomorphism) commutative algebras of dimension 7 (Poonen, 2008).

7-dimensional d-Algebras

- Question: Are there any other (up to isomorphism) 7-dimensional (noncommutative) d-algebras?
- For reference, there are infinitely many (up to isomorphism) commutative algebras of dimension 7 (Poonen, 2008).
- Main Result:

Theorem

Up to isomorphism, there exists only one noncommutative d-algebra of dimension 7.

Acknowledgements

I would like to thank:

Acknowledgements

I would like to thank:

- My mentor Lucas Mason-Brown

Acknowledgements

I would like to thank:

- My mentor Lucas Mason-Brown
- Pavel Etingof

Acknowledgements

I would like to thank:

- My mentor Lucas Mason-Brown
- Pavel Etingof
- Siddharth Venkatesh

Acknowledgements

I would like to thank:

- My mentor Lucas Mason-Brown
- Pavel Etingof
- Siddharth Venkatesh
- The MIT PRIMES program and the MIT math department

Acknowledgements

I would like to thank:

- My mentor Lucas Mason-Brown
- Pavel Etingof
- Siddharth Venkatesh
- The MIT PRIMES program and the MIT math department
- My parents

