Classifying Graph Lie Algebras

Michael Gintz Mentor: Dr. Tanya Khovanova

PRIMES Conference, May 20 2017

Michael Gintz

Classifying Graph Lie Algebras

May 20, 2017 1 / 16

Defining a Graph

A graph is a set of points, some of which are connected by lines.

Defining a Graph

A *graph* is a set of points, some of which are connected by lines. A *simple graph* has at most one connection between any two points, and no connection between a point and itself.

Defining a Graph

A graph is a set of points, some of which are connected by lines.

A *simple graph* has at most one connection between any two points, and no connection between a point and itself.

There are many well-known graph theory problems:

- The Konigsberg Bridges Problem
- The Traveling Salesman
- The Four-Color Theorem

Defining a Graph Algebra

An *algebra* is a vector space equipped with a multiplication operator.

• Our algebra includes 1.

- Our algebra includes 1.
- Our set of monomials is *linearly independent*: no monomial is a sum of multiples of other monomials.

- Our algebra includes 1.
- Our set of monomials is *linearly independent*: no monomial is a sum of multiples of other monomials.

•
$$e_i^2 = -1$$
.

- Our algebra includes 1.
- Our set of monomials is *linearly independent*: no monomial is a sum of multiples of other monomials.
- $e_i^2 = -1$.
- e_i and e_j anticommute (e_ie_j = -e_je_i) when vertices i and j are connected: otherwise they commute (e_ie_j = e_je_i).

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition

For a set $\alpha = \{e_{i_1}, ..., e_{i_k}\}$, the monomial e_{α} is equal to $e_{i_1}...e_{i_k}$.

Definition

For a set $\alpha = \{e_{i_1}, ..., e_{i_k}\}$, the monomial e_{α} is equal to $e_{i_1}...e_{i_k}$.

 $e_1e_3 \cdot e_2e_3$

Definition

For a set $\alpha = \{e_{i_1}, ..., e_{i_k}\}$, the monomial e_{α} is equal to $e_{i_1}...e_{i_k}$.

 $e_1e_3 \cdot e_2e_3 = -e_1e_2e_3e_3$

Definition

For a set $\alpha = \{e_{i_1}, ..., e_{i_k}\}$, the monomial e_{α} is equal to $e_{i_1}...e_{i_k}$.

$$e_1e_3 \cdot e_2e_3 = -e_1e_2e_3e_3$$
$$= e_1e_2.$$

Definition

For a set $\alpha = \{e_{i_1}, ..., e_{i_k}\}$, the monomial e_{α} is equal to $e_{i_1}...e_{i_k}$.

$$e_1e_3 \cdot e_2e_3 = -e_1e_2e_3e_3$$
$$= e_1e_2.$$

Theorem

Monomials e_{α} and e_{β} anticommute if there exist an odd number of pairs of connected vertices with one in α and one in β .

Michael Gintz

Classifying Graph Lie Algebras

May 20, 2017 4 / 16

A D > A A P >

Structure of a Graph Algebra

Definition

The symmetric difference of two sets α, β is defined as follows:

 $\alpha \triangle \beta = (\alpha \cup \beta) \backslash (\alpha \cap \beta).$

A (1) > A (2) > A

Structure of a Graph Algebra

Definition

The symmetric difference of two sets α, β is defined as follows:

 $\alpha \triangle \beta = (\alpha \cup \beta) \backslash (\alpha \cap \beta).$

Multiplication is easily calculated up to a sign:

Lemma

For two sets α , β , the product $e_{\alpha}e_{\beta}$ is equal to $\pm e_{\alpha \bigtriangleup \beta}$.

Structure of a Graph Algebra

Definition

The symmetric difference of two sets α, β is defined as follows:

 $\alpha \triangle \beta = (\alpha \cup \beta) \backslash (\alpha \cap \beta).$

Multiplication is easily calculated up to a sign:

Lemma

For two sets α , β , the product $e_{\alpha}e_{\beta}$ is equal to $\pm e_{\alpha \bigtriangleup \beta}$.

Mutiplying $e_1e_3 \cdot e_2e_3$ always yields $\pm e_1e_2$:

$$\begin{array}{ccc} e_1 & \mathfrak{R} \\ e_2 & \mathfrak{R} = \pm e_1 e_2 \end{array}$$

イロト 不得下 イヨト イヨト

A Lie algebra is a vector space equipped with a Lie bracket.

A Lie algebra is a vector space equipped with a Lie bracket. Any Lie bracket must have certain properties.

< ロ > < 同 > < 三 > < 三

A Lie algebra is a vector space equipped with a Lie bracket. Any Lie bracket must have certain properties.

It must be bilinear: [ax + by, z] = a[x, z] + b[y, z] for all a, b in our field (in our case ℂ).

A Lie algebra is a vector space equipped with a Lie bracket.

Any Lie bracket must have certain properties.

- It must be bilinear: [ax + by, z] = a[x, z] + b[y, z] for all a, b in our field (in our case ℂ).
- It must be alternative: [x, x] = 0.

A Lie algebra is a vector space equipped with a Lie bracket. Any Lie bracket must have certain properties.

- It must be bilinear: [ax + by, z] = a[x, z] + b[y, z] for all a, b in our field (in our case ℂ).
- It must be alternative: [x, x] = 0.
- It must satisfy the Jacobi Identity:

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$

< 🗇 🕨 < 🖃 🕨

-

Since we have defined a multiplication function on the vector space of monomials, we can define our Lie bracket as the commutator of its operands:

$$[x,y]=xy-yx.$$

- 4 同 6 4 日 6 4 日 6

Since we have defined a multiplication function on the vector space of monomials, we can define our Lie bracket as the commutator of its operands:

$$[x,y]=xy-yx.$$

We can define a Lie algebra $\mathfrak{L}(G)$ of an *n*-vertex graph *G*.

Since we have defined a multiplication function on the vector space of monomials, we can define our Lie bracket as the commutator of its operands:

$$[x,y]=xy-yx.$$

We can define a Lie algebra $\mathfrak{L}(G)$ of an *n*-vertex graph *G*.

• Every generator $e_1, ..., e_n$ is in $\mathfrak{L}(G)$.

イロト 不得下 イヨト イヨト

Since we have defined a multiplication function on the vector space of monomials, we can define our Lie bracket as the commutator of its operands:

$$[x,y]=xy-yx.$$

We can define a Lie algebra $\mathfrak{L}(G)$ of an *n*-vertex graph *G*.

- Every generator $e_1, ..., e_n$ is in $\mathfrak{L}(G)$.
- No Lie subalgebra of $\mathfrak{L}(G)$ contains every generator.

イロト 不得下 イヨト イヨト

We can form the Lie algebra of the complete graph K_4 by hand.

Classifying Graph Lie Algebras

3 May 20, 2017 8 / 16

-

Image: A match a ma

We can form the Lie algebra of the complete graph K_4 by hand. We must have monomials e_1, e_2, e_3, e_4 .

-

Image: A match a ma

We can form the Lie algebra of the complete graph K_4 by hand. We must have monomials e_1, e_2, e_3, e_4 . We can combine each pair of generators using the Lie bracket: $e_1e_2, e_1e_3, e_1e_4, e_2e_3, e_2e_4, e_3e_4$.

We can form the Lie algebra of the complete graph K_4 by hand. We must have monomials e_1, e_2, e_3, e_4 .

We can combine each pair of generators using the Lie bracket:

 $e_1e_2, e_1e_3, e_1e_4, e_2e_3, e_2e_4, e_3e_4.$

We can not have any more monomials, as every pair of monomials other than pairs of generators contain commuting monomials. Therefore our Lie Algebra has 10 dimensions.

We will create a series of alterations on our graph called a *swap* about vertex A with respect to B. This is denoted as ${}_{A}G_{B}$. We consider all vertices $v \neq A, B$ connected to A.

We will create a series of alterations on our graph called a *swap* about vertex A with respect to B. This is denoted as ${}_{A}G_{B}$. We consider all vertices $v \neq A, B$ connected to A.

• If v is connected to B, we remove the edge connecting v and B.

We will create a series of alterations on our graph called a *swap* about vertex A with respect to B. This is denoted as ${}_{A}G_{B}$. We consider all vertices $v \neq A, B$ connected to A.

- If v is connected to B, we remove the edge connecting v and B.
- If v is not connected to B, we add an edge connecting v and B.

We will create a series of alterations on our graph called a *swap* about vertex A with respect to B. This is denoted as ${}_{A}G_{B}$. We consider all vertices $v \neq A, B$ connected to A.

- If v is connected to B, we remove the edge connecting v and B.
- If v is not connected to B, we add an edge connecting v and B.

Swapping our graph always preserves its algebra:

Theorem

For all graphs G, algebras $\mathcal{A}(G)$ and $\mathcal{A}(_AG_B)$ are isomorphic.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Swapping our graph always preserves its algebra:

Theorem

For all graphs G, algebras $\mathcal{A}(G)$ and $\mathcal{A}(_AG_B)$ are isomorphic.

Sometimes, swapping our graph can preserve the Lie algebra as well:

Theorem

For all graphs G, Lie algebras $\mathfrak{L}(G)$ and $\mathfrak{L}({}_{A}G_{B})$ are isomorphic when A and B are connected.

Removing Leaves from our Graph

Say we have a graph G with 2 leaves A, B connected to the same vertex.

Classifying Graph Lie Algebras

May 20, 2017 11 / 16

Removing Leaves from our Graph

Say we have a graph G with 2 leaves A, B connected to the same vertex. Theorem

$$\mathfrak{L}(G) = \mathfrak{L}(G \setminus A) \oplus \mathfrak{L}(G \setminus A).$$

		220	
101	н	lae.	

Classifying Graph Lie Algebras

May 20, 2017 11 / 16

Completely Classified Graphs

A path graph with n vertices has a Lie algebra isomorphic to a skew symmetric matrix Lie algebra with size n + 1.

May 20, 2017 12 / 16

Completely Classified Graphs

A path graph with n vertices has a Lie algebra isomorphic to a skew symmetric matrix Lie algebra with size n + 1.

The Lie algebra of a complete graph with n vertices is isomorphic to that of a path graph with n vertices.

More Completely Classified Graphs

The Lie algebra of a star graph with n vertices is the direct sum of 2^{n-2} copies of a connected 2-vertex graph Lie algebra.

More Completely Classified Graphs

The Lie algebra of a star graph with n vertices is the direct sum of 2^{n-2} copies of a connected 2-vertex graph Lie algebra.

The Lie algebra of a n-2 vertex graph with 2 leaves attached to the same end (Dynkin diagram D_n) is a direct sum of two copies of the Lie algebra of an n-1 vertex path graph.

-

Image: A math a math

• Generalize our decomposition move.

-

- Generalize our decomposition move.
- Create similar alterations to swaps.

- Generalize our decomposition move.
- Create similar alterations to swaps.
- Relate graph Lie algebras to matrix algebras.

Acknowledgements

- Dr. Tanya Khovanova
- The PRIMES Program
- My parents

Questions?

	220	
- 10		

Classifying Graph Lie Algebras

May 20, 2017 16 / 16

三 のへの

▲口> ▲圖> ▲屋> ▲屋>