
Braid Groups

4.8 Center of the Braid Group

4.8.1 Theorem

The center of the braidgroup B_n is the cyclic group generated by τ^n where $\tau = \sigma_1 \sigma_2 \sigma_3 \dots \sigma_{n-1}$.

 τ^n is equivalent to the full twist on n strands.

If τ^n commutes with every generator, it is in the center of B_n . First, when i > 1

$$\sigma_{i}\tau = \sigma_{i}\sigma_{1}\sigma_{2}\sigma_{3}...\sigma_{i-1}\sigma_{i}...\sigma_{n-1}$$

$$= \sigma_{1}\sigma_{2}\sigma_{3}...\sigma_{i}\sigma_{i-1}\sigma_{i}...\sigma_{n-1}$$

$$= \sigma_{1}\sigma_{2}\sigma_{3}...\sigma_{i-1}\sigma_{i}\sigma_{i-1}...\sigma_{n-1}$$

$$= \sigma_{1}\sigma_{2}\sigma_{3}...\sigma_{i-1}\sigma_{i}...\sigma_{n-1}\sigma_{i-1}$$

$$= \tau\sigma_{i-1}$$
(5)

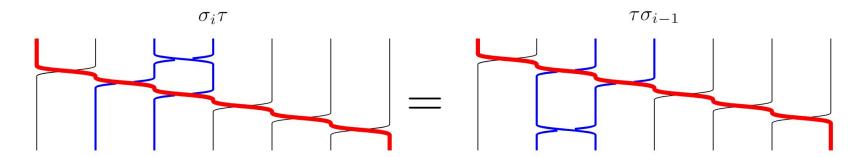


Figure 15: This has a visual effect of σ_i sliding past τ and moving to the left to become σ_{i-1} .

When we continue this "sliding past" process, we get the following:

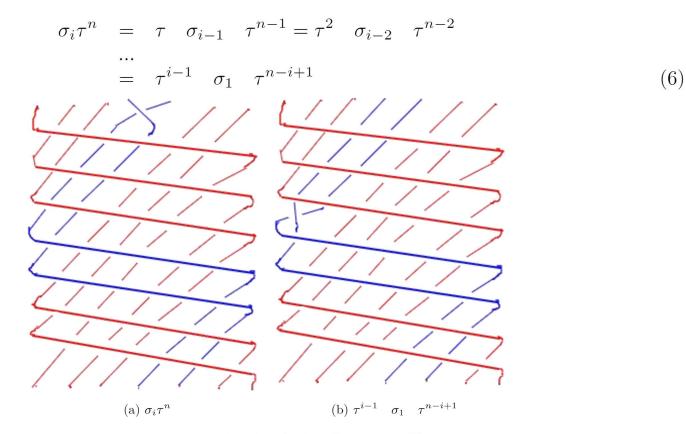


Figure 16: equivalent braids that illustrate eq (6)