Graph Theory and Tesselations

Richard Xu¹ Mentor: Sergiy Merenkov² PRIMES Conference

¹Scarsdale High School

²Professor of Mathematics CCNY-CUNY

May 20th, 2017

Introduction: Graphs

Definition of a graph

A graph G = (V, E) is a set of vertices V together with a set of edges E connecting these vertices.

A simple graph

A non-simple graph

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Introduction: Tilings

Definition of a tiling

Informally, a *tiling* (tessellation) is a collection P of geometric shapes with no overlap, and no empty space in between. Specifically, a *square tiling* of a rectangle R is a set $T = (T_v, v \in V)$ of squares with disjoint interiors whose union is R.

Introduction: Tilings

Definition of a tiling

Informally, a *tiling* (tessellation) is a collection P of geometric shapes with no overlap, and no empty space in between. Specifically, a *square tiling* of a rectangle R is a set $T = (T_v, v \in V)$ of squares with disjoint interiors whose union is R.

How does a tiling relate to a graph?

Contacts Graph

A Contacts Graph captures the combinatorics of a packing.

Contacts Graph

Consider tiling $T = (T_v : v \in V)$. The contacts graph of P is the graph G = (V, E) where distinct vertices $v, w \in V$ are joined by an edge if and only if $T_v \cap T_w \neq \emptyset$.

A square tiling and its contact graph.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Connecting Tilings and Graphs

Brooks et. al: Square tiling where no two squares are equal; Sets of squares correspond to vertices; Put weights on edges.

Schramm: No restrictions on the squares; Squares correspond to vertices; Put weights on vertices.

Planar graph and its boundaries

Planar Graph

A *Planar Graph* is a graph that can be embedded in the plane. This embedding allows us to rigorously define *faces* of the graph.

Planar graph with 6 faces. One of these faces is unbounded.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の < (~)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Connections to previous work

If we view our planar graph as a tiling, and consider its contact graph, our extremal problem becomes similar to Schramm's. Therefore, it is considered a *dual* of Schramm's problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

We calculate extremal weights by first calculating the extremal oscillations.

Our algorithm *converges* to the extremal oscillations with error bound $E_n \leq O(n^{-\frac{1}{2}})$.

We then convert the extremal oscillations back into extremal weights on vertices.

Example

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Example (cont.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Future Work

Extending the configuration to an annulus:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Future Work (cont.)

Infinite graphs

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣べ⊙

Acknowledgements

- MIT Math Department
- MIT-PRIMES Program
- Prof. Sergiy Merenkov
- Dr. Tanya Khovanova

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

My parents