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Introduction: Graphs

Definition of a graph
A graph G = (V,E) is a set of vertices V together with a set of
edges E connecting these vertices.

A simple graph A non-simple graph



Introduction: Tilings

Definition of a tiling

Informally, a tiling (tessellation) is a collection P of geometric
shapes with no overlap, and no empty space in between.
Specifically, a square tiling of a rectangle R is a set

T =(T,,v € V) of squares with disjoint interiors whose union is
R.
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How does a tiling relate to a graph?



Contacts Graph

A Contacts Graph captures the combinatorics of a packing.

Contacts Graph

Consider tiling T = (T, : v € V). The contacts graph of P is the
graph G = (V, E) where distinct vertices v, w € V are joined by

an edge ifandonly if T,N T,, # .

A square tiling and its contact graph.




Connecting Tilings and Graphs

Brooks et. al: Square tiling where no two squares are equal;
Sets of squares correspond to vertices;
Put weights on edges.

Schramm: No restrictions on the squares;
Squares correspond to vertices;
Put weights on vertices.



Planar graph and its boundaries

Planar Graph

A Planar Graph is a graph that can be embedded in the plane.
This embedding allows us to rigorously define faces of the graph.

Planar graph with 6 faces.
One of these faces is unbounded.



Our extremal Problem
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Our extremal Problem




Connections to previous work

If we view our planar graph as a tiling, and consider its contact
graph, our extremal problem becomes similar to Schramm'’s.
Therefore, it is considered a dual of Schramm’s problem.
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Calculating extremal weights

We calculate extremal weights by first calculating the extremal
oscillations.

Our algorithm converges to the extremal oscillations with error
bound E, < O(n"2).

We then convert the extremal oscillations back into extremal
weights on vertices.



Example
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Example (cont.)




Future Work

Extending the configuration to an annulus:




Future Work (cont.)

Infinite graphs
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