A Versatile Algorithm for Finding Patterns in Large Cancer Cell Line Data Sets

James Jusuf, Phillips Academy Andover

May 21, 2017

MIT PRIMES

The Broad Institute of MIT and Harvard

Introduction

- A quest to understand the cancer genome
 - Discover pathways that can be targeted in cancer treatment
 - Predict valuable information about cancer patients based on known genetic indicators
- An explosion in the amount of available data
 - Human Genome Project (1990-2003)
 - Databases: COSMIC (2004), TCGA (2005), CCLE (2012)

The more data the better: larger sample sizes allow us to detect patterns in with more reliability

Introduction

 Our study focuses on two widely studied phenomena in cancer genomics/epigenomics:

Fig. 1A: Mutations: variations in DNA sequence

Fig. 1B: Methylation: amount and location of methyl (–CH₃) groups attached to DNA, which regulate gene expression

Goals

Find genes and cancer types in which a specific mutation affects a cell's methylation profile

Create an algorithm to quantify the correlation between methylation and the mutation of a given gene in a given cancer type

In the future:

- Apply the algorithm to other variables, e.g. exon splicing and mutations
- Further investigate any potentially significant patterns we discover in the laboratory

Fig. 3: Clustering can be generalized into any number of dimensions

How does clustering work mathematically?

	x	У	z
Point 1	0.881473	0.415152	0.347788
Point 2	0.288146	0.569702	0.908189
Point 3	0.427435	0.356902	0.115739
Point 4	0.798566	0.022943	0.701404
Point 5	0.782873	0.080847	0.984127
Point 6	0.816311	0.807285	0.305015
Point 7	0.851955	0.585014	0.502675
Point 8	0.414718	0.682758	0.705790
Point 9	0.690270	0.973028	0.299032
Point 10	0.149777	0.729009	0.856610
Point 11	0.819421	0.602934	0.696992
Point 12	0.721937	0.755144	0.101429
Point 13	0.876832	0.077384	0.481739
Point 14	0.372119	0.661133	0.901118
Point 15	0.955967	0.724219	0.135828
Point 16	0.947952	0.950937	0.079200
Point 17	0.218410	0.515327	0.365767
Point 18	0.642752	0.047332	0.785130
Point 19	0.290806	0.251907	0.137299

Fig. 4A: Sample table of 3-dimensional data showing *x*, *y*, and *z*-coordinates of 19 points

Calculate the Euclidean distance between every pair of points:

$$d_{ij} = \sqrt{\Delta x_{ij}^2 + \Delta y_{ij}^2 + \Delta z_{ij}^2}$$

How does clustering work mathematically?

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1																			
2	0.84																		
3	0.25	0.36																	
4	0.01	0.04	0.52																
5	0.29	0.84	0.98	0.71															
6	0.15	0.58	0.41	0.66	0.26														
7	0.91	0.98	0.42	0.28	0.12	0.41													
8	0.54	0.85	0.34	0.83	0.20	0.78	0.29												
9	0.07	0.27	0.57	0.92	0.52	1.00	0.91	0.40											
10	0.10	0.27	0.12	0.33	0.33	0.04	0.44	0.55	0.48										
11	0.08	0.26	0.63	0.10	0.63	0.13	0.43	0.15	0.96	0.90									
12	0.30	0.73	0.17	0.89	0.76	0.97	0.98	0.83	0.98	0.18	0.16								
13	0.94	0.77	0.30	0.60	0.15	0.54	0.07	0.79	0.56	1.00	0.01	0.55							
14	0.11	0.89	0.69	0.09	0.77	0.91	0.60	0.61	0.25	0.53	0.50	0.29	0.67						
15	0.07	0.60	0.19	0.01	0.61	0.97	0.46	0.43	0.65	0.55	0.79	0.57	0.39	0.04					
16	0.13	0.77	0.64	0.89	0.78	0.10	0.20	0.20	0.49	0.51	0.80	0.83	0.65	0.51	0.98				
17	0.75	0.67	0.21	0.66	0.34	0.99	0.49	0.14	0.44	0.37	0.63	0.29	0.76	0.73	0.99	0.49			
18	0.50	0.34	0.41	0.21	0.95	0.76	0.56	0.21	0.87	0.50	0.80	0.59	0.08	0.52	0.61	0.31	0.77		
19	0.86	0.77	0.09	0.27	0.62	0.39	0.50	0.75	0.41	0.14	0.91	0.03	0.65	0.57	0.75	0.01	0.42	0.23	

Fig. 4B: A distance matrix of the 19 data points

Back to our project

• Create an algorithm to quantify the correlation between methylation and the mutation of a given gene in a given cancer type

Fig. 5: Sample cell lines clustered by methylation

• Null hypothesis: There is no relationship between methylation and mutation in [gene] among cells of [cancer type]

Cancer Cell Line Data

Fig. 6: Data pipeline for analyzing the correlation between methylation and mutation in a given cancer type

Cancer Cell Line Data

Fig. 6: Data pipeline for analyzing the correlation between methylation and mutation in a given cancer type

Methylation Data

		Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	 Gene T
	Cell Line 1	#	#	#	#	#	#
	Cell Line 2	#	#	#	#	#	#
	Cell Line 3	#	#	#	#	#	#
	Cell Line 4	#	#	#	#	#	#
	Cell Line 5	#	#	#	#	#	#
	Cell Line 6	#	#	#	#	#	#
	Cell Line 7	#	#	#	#	#	#
Canada	Cell Line 8	#	#	#	#	#	#
Type	Cell Line 9	#	#	#	#	#	#
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cell Line 10	#	#	#	#	#	#
	Cell Line 11	#	#	#	#	#	#
	Cell Line 12	#	#	#	#	#	#
	Cell Line 13	#	#	#	#	#	#
	Cell Line 14	#	#	#	#	#	#
	Cell Line N	#	#	#	#	#	#

Calculate the Euclidean distance between every pair of cell lines, now in *T* dimensions:

$$d_{ij} = \sqrt{\Delta m_{1ij}^2 + \Delta m_{2ij}^2 + \dots + \Delta m_{Tij}^2}$$

Methylation Data

Gene Name

	AZIN2_1	AZIN2_2	CLIC4_1	CLIC4_2	AGBL4_1	AGBL4_2	SLC45A1_1	
253J_URINARY_TRACT	0.1098923077	0.73438750	0.9091000	1.0000000	0.00000000	0.7500000	1.0000000	
TCCSUP_URINARY_TRACT	0.0110920988	0.54703020	0.3415584	0.9345426	0.00000000	0.0744000	0.7393607	$\tilde{\mathcal{O}}$
JMSU1_URINARY_TRACT	0.0075171233	0.04712900	0.4182667	0.9737355	0.05563550	0.0276000	0.8639367	Ì
SW1710_URINARY_TRACT	0.0036250000	0.70796736	0.5000000	0.9360120	0.31792023	0.4750000	0.9518060	
BFTC905_URINARY_TRACT	0.0426150365	0.02313853	0.4297085	0.9088060	0.61434268	0.5934000	0.6488924	
VMCUB1_URINARY_TRACT	0.0179216507	0.12030253	0.6918400	0.8824571	0.04488750	0.4360000	0.9096576	
J82_URINARY_TRACT	0.1363491667	0.82057018	0.3935484	0.9570101	0.00000000	0.0202750	0.9090909) Le
UMUC1_URINARY_TRACT	0.0335644722	0.64642808	0.8542200	0.9324062	0.76325016	0.9234250	0.9168654	
T24_URINARY_TRACT	0.0170098874	0.28143952	0.5748750	0.8874346	0.44304051	0.7777500	0.8642019	
CAL29_URINARY_TRACT	0.0026990553	0.01931818	0.3032647	0.9227400	0.05523743	0.0000000	0.7682891	C
5637_URINARY_TRACT	0.0005137363	0.05429000	0.4265000	0.8727714	0.78499375	0.4062500	0.9212584	C
KMBC2_URINARY_TRACT	0.1043622530	0.30006772	0.6528986	0.9760048	0.48159668	0.3932618	0.9353464	Č
SCABER_URINARY_TRACT	0.0192194139	0.13963755	0.3344188	0.9411486	0.80294232	0.9117750	0.8721246	
UMUC3_URINARY_TRACT	0.0067134417	0.80654940	0.5720769	0.9891942	0.42446212	0.2964750	0.9153723	

Fig. 9B: Section of methylation data for bladder cancer cell lines

(9 more rows)

Calculate the Euclidean distance between every pair of cell lines, now in *T* dimensions:

$$d_{ij} = \sqrt{\Delta m_{1ij}^{2} + \Delta m_{2ij}^{2} + \dots + \Delta m_{Tij}^{2}}$$

Methylation Distance Matrix

		Cell Line 1	Cell Line 2	Cell Line 3	Cell Line 4	Cell Line 5		Cell Line N-2	Cell Line N-1	Cell Line N
	Cell Line 1									
	Cell Line 2	#								
	Cell Line 3	#	#							
Cancer	Cell Line 4	#	#	#						
Туре	Cell Line 5	#	#	#	#					
	•••						•••			
	Cell Line N-2	#	#	#	#	#				
	Cell Line N-1	#	#	#	#	#		#		
	Cell Line N	#	#	#	#	#		#	#	

Fig. 9C: N x N Methylation distance matrix

Cancer Cell Line Data

Fig. 6: Data pipeline for analyzing the correlation between methylation and mutation in a given cancer type

Cancer Cell Line Data

Fig. 6: Data pipeline for analyzing the correlation between methylation and mutation in a given cancer type

Incorporating Mutation Data

Gene A

		Cell Line 1	Cell Line 2	Cell Line 3	Cell Line 4	Cell Line 5		Cell Line N-2	Cell Line N-1	Cell Line N
	Cell Line 1									
	Cell Line 2	#								
	Cell Line 3	#	#							
Cancer	Cell Line 4	#	#	#						
Туре	Cell Line 5	#	#	#	#					
	•••						•••			
	Cell Line N-2	#	#	#	#	#				
	Cell Line N-1	#	#	#	#	#		#		
	Cell Line N	#	#	#	#	#		#	#	

Fig. 10A: Cell lines 2, 4, and N-1 have mutations in Gene A

Incorporating Mutation Data

Gene B

		Cell Line 1	Cell Line 2	Cell Line 3	Cell Line 4	Cell Line 5		Cell Line N-2	Cell Line N-1	Cell Line N
	Cell Line 1									
	Cell Line 2	#								
	Cell Line 3	#	#							
Cancer	Cell Line 4	#	#	#						
Туре	Cell Line 5	#	#	#	#					
	•••						•••			
	Cell Line N-2	#	#	#	#	#				
	Cell Line N-1	#	#	#	#	#		#		
	Cell Line N	#	#	#	#	#		#	#	

Fig. 10B: Cell lines 3 and 5 have mutations in Gene B

Incorporating Mutation Data

Gene C

		Cell Line 1	Cell Line 2	Cell Line 3	Cell Line 4	Cell Line 5	 Cell Line N-2	Cell Line N-1	Cell Line N
	Cell Line 1								
	Cell Line 2	#							
	Cell Line 3	#	#						
Cancer	Cell Line 4	#	#	#					
Туре	Cell Line 5	#	#	#	#				
	Cell Line N-2	#	#	#	#	#	_		
	Cell Line N-1	#	#	#	#	#	#		
	Cell Line N	#	#	#	#	#	#	#	

Fig. 10C: Cell lines 1, 2, and N have mutations in Gene C

The Algorithm

Gene X

		Cell Line 1	Cell Line 2	Cell Line 3	Cell Line 4	Cell Line 5		Cell Line N-2	Cell Line N-1	Cell Line N
	Cell Line 1									
	Cell Line 2	#								
	Cell Line 3	#	#							
Cancer	Cell Line 4	#	#	#						
Туре	Cell Line 5	#	#	#	#					
	•••						•••			
	Cell Line N-2	#	#	#	#	#				
	Cell Line N-1	#	#	#	#	#		#		
	Cell Line N	#	#	#	#	#		#	#	

- Suppose that k out of N cell lines have a mutation in gene X
- There are N(N-1)/2 distances in the entire distance matrix
- There are k(k-1)/2 distances between the cell lines with mutations

The Algorithm

Gene X

		Cell Line 1	Cell Line 2	Cell Line 3	Cell Line 4	Cell Line 5		Cell Line N-2	Cell Line N-1	Cell Line N
	Cell Line 1									
	Cell Line 2	#								
	Cell Line 3	#	#							
Cancer	Cell Line 4	#	#	#						
Туре	Cell Line 5	#	#	#	#					
							•••			
	Cell Line N-2	#	#	#	#	#				
	Cell Line N-1	#	#	#	#	#		#		
	Cell Line N	#	#	#	#	#		#	#	

- Call the distribution of all values in the matrix {*A*}
- Call the sample of k(k-1)/2 distances between mutated cell lines {K}

The Algorithm

- What is the probability that the sample {*K*} occurs entirely by random chance?
- Randomly select 10,000 samples of size k(k-1)/2 within the N x N half-matrix, and call these samples {R₁} thru {R_{10,000}}
- Use the **Kolmogorov-Smirnov (KS) test**, which returns the likelihood that a given sample is derived from some reference distribution (similarity score)
- The p-value will be the percentage of the time that KS({K}, {A}) exceeds KS({R_i}, {A}) as *i* ranges from 1 to 10,000
- Repeat process for each gene; p-values corrected for multiple hypothesis testing using Benjamini–Hochberg (BH)

Improving the Algorithm

- Instead of using the distance matrix to calculate p-values, we can use the cophenetic distance matrix based on hierarchical clustering instead
- Takes into account the proximity of other data points; amplifies biologically relevant signal and removes noise

Visualizing the output

Fig. 12: Heatmap of deletion mutations in top-scoring genes in kidney cancer cell lines

Sample Results

Ly

and 2

Fig. 13: MYC is a known oncogene in B-cell lymphomas and other cancers

Generalizing the algorithm

- Clustered cell lines based on exon splicing instead of methylation
- Find correlation between exon splicing patterns and mutations
- Could use algorithm for other applications in the future

Sample Results

Fig. 14: SF3B1 is known to affect splicing patterns in pancreatic cancer

Acknowledgements

I would like to thank:

- Dr. Mahmoud Ghandi
- The Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) for providing the data used in this study
- The PRIMES program coordinators
- My parents

