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Introduction 

• A quest to understand the cancer genome 
• Discover pathways that can be targeted in cancer treatment 
• Predict valuable information about cancer patients based on known genetic 

indicators 

• An explosion in the amount of available data 
• Human Genome Project (1990-2003) 
• Databases: COSMIC (2004), TCGA (2005), CCLE (2012) 

The more data the better: larger sample sizes allow us to detect 
patterns in with more reliability 



Introduction 

• Our study focuses on two widely studied phenomena in cancer 
genomics/epigenomics: 

Fig. 1A: Mutations: variations 
in DNA sequence 
 

Fig. 1B: Methylation: amount and 
location of methyl (–CH3) groups 
attached to DNA, which regulate gene 
expression 



Goals 

Create an algorithm to quantify the correlation between 
methylation and the mutation of a given gene in a given 
cancer type 

Find genes and cancer types in which a specific mutation 
affects a cell’s methylation profile 

In the future: 
 

• Apply the algorithm to other variables, e.g. exon splicing and 
mutations 

• Further investigate any potentially significant patterns we 
discover in the laboratory 



What is unsupervised clustering? 

Fig. 2A: Some arbitrary data 



What is unsupervised clustering? 

Fig. 2B: Data partitioned into 2 clusters 



What is unsupervised clustering? 

Fig. 2C: Data partitioned into 3 clusters 



What is unsupervised clustering? 

Fig. 3: Clustering can be generalized into any number of dimensions 



How does clustering work 
mathematically? 

Fig. 4A: Sample table of 3-dimensional data 
showing x, y, and z-coordinates of 19 points 

𝑑𝑑𝑖𝑖𝑖𝑖 = Δ𝑥𝑥𝑖𝑖𝑖𝑖2 + Δ𝑦𝑦𝑖𝑖𝑖𝑖2 + Δ𝑧𝑧𝑖𝑖𝑖𝑖2 

Calculate the Euclidean distance between 
every pair of points: 



How does clustering work 
mathematically? 

Fig. 4B: A distance matrix of the 19 data points 



Back to our project 
• Create an algorithm to quantify the correlation between methylation 

and the mutation of a given gene in a given cancer type 

 
 
 
 
 
 
 
 
• Null hypothesis: There is no relationship between methylation and 

mutation in [gene] among cells of [cancer type] 

Methylation 
Cluster 1 

Methylation 
Cluster 2 

All have mutation 
in Gene X 

No mutations in 
Gene X 

Fig. 5: Sample cell lines clustered by methylation 



Cancer Cell Line Data 

Methylation Data Mutation Data 

All Data (CCLE) 
697 cell lines 
30394 genes 

 23 cancer types 

Fig. 6: Data pipeline for analyzing the correlation between methylation and mutation in a 
given cancer type 

Colorectal (52 cell lines) 

Algorithm p-Values 
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Methylation Data 



Methylation Data 

Fig. 9A: 
Methylation data 

𝑑𝑑𝑖𝑖𝑖𝑖 = Δ𝑚𝑚1𝑖𝑖𝑖𝑖
2 + Δ𝑚𝑚2𝑖𝑖𝑖𝑖

2 + ⋯+ Δ𝑚𝑚𝑇𝑇𝑖𝑖𝑖𝑖
2 

Calculate the Euclidean distance between 
every pair of cell lines, now in T dimensions: 

Gene T 



Methylation Data 

Fig. 9B: Section of 
methylation data for 
bladder cancer cell 
lines 
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𝑑𝑑𝑖𝑖𝑖𝑖 = Δ𝑚𝑚1𝑖𝑖𝑖𝑖
2 + Δ𝑚𝑚2𝑖𝑖𝑖𝑖

2 + ⋯+ Δ𝑚𝑚𝑇𝑇𝑖𝑖𝑖𝑖
2 

Calculate the Euclidean distance between 
every pair of cell lines, now in T dimensions: 



Methylation Distance Matrix 

Fig. 9C: N x N Methylation distance matrix 
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Incorporating Mutation Data 

Gene A 

Fig. 10A: Cell lines 2, 4, and N–1 have mutations in Gene A 



Incorporating Mutation Data 

Gene B 

Fig. 10B: Cell lines 3 and 5 have mutations in Gene B 



Incorporating Mutation Data 

Gene C 

Fig. 10C: Cell lines 1, 2, and N have mutations in Gene C 



The Algorithm 

• Suppose that k out of N cell lines have a mutation in gene X 
• There are N(N–1)/2 distances in the entire distance matrix 
• There are k(k–1)/2 distances between the cell lines with mutations 

Gene X 



The Algorithm 

• Call the distribution of all values in the matrix {A} 
• Call the sample of k(k–1)/2 distances between mutated cell lines 

{K} 

Gene X 



The Algorithm 

• What is the probability that the sample {K} occurs entirely by 
random chance? 

• Randomly select 10,000 samples of size k(k–1)/2 within the N x N 
half-matrix, and call these samples {R1} thru {R10,000} 

• Use the Kolmogorov-Smirnov (KS) test, which returns the 
likelihood that a given sample is derived from some reference 
distribution (similarity score) 

• The p-value will be the percentage of the time that KS({K}, {A}) 
exceeds KS({Ri}, {A}) as i ranges from 1 to 10,000 

• Repeat process for each gene; p-values corrected for multiple 
hypothesis testing using Benjamini–Hochberg (BH) 



Improving the Algorithm 

• Instead of using the distance matrix to calculate p-values, we can 
use the cophenetic distance matrix based on hierarchical 
clustering instead 

• Takes into account the proximity of other data points; amplifies 
biologically relevant signal and removes noise 

Fig. 11: Example of 
cophenetic distance in 

2D sample data 



Visualizing the output 

Fig. 12: Heatmap of 
deletion mutations 
in top-scoring genes 
in kidney cancer cell 
lines 



Sample Results 

Fig. 13: MYC is a known oncogene in B-cell lymphomas and other cancers 

Ly 



Generalizing the algorithm 

• Clustered cell lines based on exon splicing instead of methylation 
• Find correlation between exon splicing patterns and mutations 
• Could use algorithm for other applications in the future 



Sample Results 

Fig. 14: SF3B1 is known to affect splicing patterns in pancreatic cancer 
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