Enrichment and Analysis of Sequence Motifs in Genomic Variant Calls

Adithya Vellal Mentor: Dr. Gil Alterovitz 7th Annual PRIMES Conference May 21 2017

Intro to Next Generation Sequencing

- Individual genomes can be sequenced inexpensively
- 3 major parts
 - Raw Genomic Sequence Data(FASTA/FASTQ)
 - Sequence Alignments(SAM/BAM)
 - Genomic Variant Calls(VCF/BCF)
- Finding and analyzing patterns in data crucial to better understanding diseases and drugs

NGS Pipeline

Gene Regulation and ChIP Seq

- Various factors control RNA transcription
 - Regulation of gene expression
- Transcription Factor Binding Sites(TFBS)
 - Represented by sequence motifs
- Chromatin

Immunoprecipitation + NGS → ChIP-Seq

 Peak analysis to determine binding location

Binding Motifs

- Short sequences which represent binding sites
 - ~10 base pairs in length
- Determined using ChIP Seq
 - ENCODE and JASPAR databases
 - Slow and expensive process
 - No way to find common patterns between TFBS
- Not 100% specific
 - Difficult to model effects of variants on TF binding

Example TF Binding Motifs

Existing Work

- DeepMotif(Lanchantin et al.)
 - Convolutional Neural Network to classify TFBS
 - Individual network for each TF
 - Visualization techniques to predict new motifs
- Shi et al.
 - Random forest classifier
 predicts effects of SNPs on TF
 binding

DeepMotif Network Architecture

Motif Representation

- а Consensus sequence "Ideal" representation Position Weight Matrix(PWM) Measures effect of each base on binding Ο energy Easy search of novel sites with high Ο predicted affinity
 - Sequence Logo
 - Bases scaled by information content Ο

а	HEM13	CCCATTGTTCTC
	HEM13	TTTCTGGTTCTC
	HEM13	TCAATTGTTTAG
	ANB1	CTCATTGTTGTC
	ANB1	TCCATTGTTCTC
	ANB1	CCTATTGTTCTC
	ANB1	TCCATTGTTCGT
	ROX1	CCAATTGTTTTG
b		YCHATTGTTCTC
С	A	002700000010
	C	464100000505
	G	000001800112
	Т	422087088261
d	st 8.0 4.0 0.0	
e	2.0 왪 1.0 0.0	
f	2.0 碧 1.0 0.0	

Intro to Motif Identification

- Data Preparation and Preprocessing
 - Integrate variants into reference genomic sequence
 - Remove all ambiguous bases
 - Segment sequence data into sections of length 100,000
- MM Motif Identification Algorithm
 - **E-value:** expected # of similar motifs found in a sequence of similar length
 - P-value: probability that a random sequence would have a stronger motif score than the sequence of interest

Motif Identification Cont.

- 100 sequence segments analyzed
- Highest scoring motif in each segment recorded

Motif Width(bp)	Relative Frequency	Avg. E-value	Avg. P-value
42	0.51	1.8 * 10 ⁻¹¹	2.5 * 10 ⁻¹⁶
41	0.15	5.5 *10 ⁻¹³	1.0 * 10 ⁻¹⁵
48	0.12	5.6 * 10 ⁻¹⁰	2.1 * 10 ⁻¹⁷

Sample Identified Motif Logos

Motif Enrichment in ChIP Seq Data

- Analyze ChIP seq peak data for the TF of interest
- Looks for "best" site for motif in each sequence
- Statistic of measurement is **E-value**
- Using pre-determined set of motifs from identification step leads to better results

TFBS Classification Algorithm Outline

- Deep learning model
 - Convolutional neural network(CNN)
- Predicts effects of all variants on binding affinity at TFBS
- Training Data: ChIP seq peak calls(ENCODE)
 - Based on enrichment results
- Binary classification of TFBS
- Evaluation Metric: Δ P(TFBS) = P_{var}(TFBS) P_{ref}(TFBS)

Network Architecture and Evaluation

- One-hot encoding to form images from sequence data
- Layer structure(Lanchantin et al.)
 - Convolutional layer(4 x 2 feature map)
 - ReLU Layer
 - Max pooling layer(2 x 1)
 - Fully connected layer
- Final max pooling layer + softmax layer
 - Outputs TFBS probabilities

Input Softmax (Features II) classifier

Future Work

- Testing and evaluation of convolutional network
- Development of generalized network for all TFBS
 - Currently individual networks required for each one
 - Visualization could help in understanding network
- Testing network with especially compressible data
 - Potential association between effective compression and sequence motifs/TFBS

Conclusions

- Understanding patterns in sequence motifs is essential to furthering our knowledge of gene regulation
- Motif identification and enrichment can provide valuable insight into patterns found in sequence motifs
- Deep learning provides a simple and effective paradigm for predicting the effects of variants on TF binding

Acknowledgements

- **MIT PRIMES** for providing this excellent and challenging research opportunity
- **Dr. Gil Alterovitz** for all his guidance and support
- My parents for their support