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What is an Algebra?

A K -algebra is an algebraic structure with addition and
multiplication that is also a vector space over a field K .

For example, A = K [x1, x2, ..., xn] is the algebra of
polynomials in n variables with coefficients in K . One basis
for this algebra as a vector space is the set of all monomials.

{1, x1, x2, ..., xn, x21 , x1x2, ..., x1xn, x22 , x2x3, ...}
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Vector Space

We can think of the coefficients on the monomials as coordinates.
Consider the following example for polynomials in one variable.

P = 3 + 2x + 5x3

P = (3, 2, 0, 5) = 3(1, 0, 0, 0) + 2(0, 1, 0, 0) + 5(0, 0, 0, 1)
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Graded Algebra

Suppose our algebra A can be written as⊕
i≥0

Ai = A0 ⊕ A1 ⊕ ...

where each Ai is a vector space, and AiAj ⊂ Ai+j for all i , j .
Then our algebra is a graded algebra.

K [x1, x2, ..., xn] is a graded algebra with Ai being the vector
space of homogeneous polynomials of degree i .

{1}
{x1, x2, ..., xn}
{x21 , x1x2, ..., x1xn, x22 , x2x3, ...}
{x31 , x21x2, ..., x21xn, ...}
...
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Hilbert Series

The Hilbert series of a graded algebra is defined as
h(t) =

∑
i≥0 t

i dim(Ai ).

For A = K [x1, x2, ..., xn]:

dim(A0) = 1

dim(A1) = |{x1, x2, ..., xn}| = n

dim(A2) = |{x21 , x1x2, ..., }| = n(n+1)
2

See a pattern?

h(t) =
∑

i≥0 t
i

(
n + i − 1

i

)
=
∑

i≥0(−t)i
(
−n
i

)
= (1− t)−n

rational function
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Dunkl Operators

Let Sij be the operator that switches xi and xj in a polynomial

e.g. S12(x0 + x21 + x2) = (x0 + x1 + x22 )

For a given constant c , the Dunkl operators Di are such that

Di (P) = ∂P
∂xi
− c

∑
j 6=i

P−Sij (P)
xi−xj

P has degree d ⇒ Di (P) is 0 or has degree d − 1

They commute
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Dunkl Example

D1(x31 ) =
∂x31
∂x1
− c

∑
j 6=1

x31 − S1j(x
3
1 )

x1 − xj

= 3x21 − c
∑
j 6=1

x31 − x3j
x1 − xj

= 3x21 − c
∑
j 6=1

(x21 + x1xj + x2j )
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Cherednik Algebra

The Cherednik algebra, H, is generated by all of x1, x2, ..., xn,
all possible yi − yj , and all Sij , with some relations between
them, with the additional fact that x1 + x2 + ...+ xn = 0.

The xi and yi don’t necessarily commute (but the xi commute
and the yi commute).

A representation of this Cherednik algebra is just another
algebra A such that all elements of the Cherednik algebra act
as operators on A.

For each element k of H, we assign a function ρk : A→ A,
often just notated k.

Addition and multiplication become addition and composition.
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The Polynomial Representation

Let the xi act as operators where xi (P) = xi · P, and the
y1, y2, ..., yn are such that yi (P) = Di (P)

I = (x1 + x2 + ...+ xn) (the ideal)

For P ∈ I ,Q ∈ H,Q(P) ∈ I

So, let A = K [x1, x2, ..., xn]/I

The representation of the Cherednik algebra where the
elements act as operators on A is called the polynomial
representation

(yi−yj)((x1+x2+...+xn)·(P)) = (x1+x2+...+xn)·(yi−yj)(P)
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Subrepresentation

If for some subspace B ⊂ A we have that all the operators fix
B, then B gives a subrepresentation.

The existence of a nontrivial subrepresentation means our
representation is not irreducible.
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Shapovalov Form

Consider the symmetric bilinear form β : AxA∗ ⇒ K defined
with β(1, 1) = 1, β(P, yQ) = β(Dy (P),Q), and
β(xP,Q) = β(P,Dx(Q))

The exact definition of Dx is unimportant

The kernel of the form is {P ∈ A|∀Q, β(P,Q) = 0}.
β(xP,Q) = β(P,Dx(Q)) = 0, β(Dy (P),Q) = β(P, yQ) = 0,
symmetric

kernel is a subrepresentation
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Irreducible Representation

We consider H acting on A/ ker(β) = B, which turns out to be an
irreducible representation. The problem is then to describe
A/ ker(β). K is taken to be a field of positive characteristic p > 0.
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Past Results

Remember that the Hilbert series is h(t) =
∑

i≥0 t
i dim(Ai ).

For p|n, Devadas and Sun have shown that for all but finitely
many c (in the set {−1, 1, ..., p−12 }), the Hilbert series for the
irreducible representation is (1 + t + t2 + ...+ tp−1)n−1.
Note that the total dimension, which is (n − 1)p, is finite.
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Current Work: The c=0 Case

If c = 0, then the Dunkl operators just become partial
derivatives

P = xd11 xd22 ...x
dn
n

(xd11 xd22 ...x
dn
n , y

d1
1 yd22 ...y

dn
n ) = d1!d2!...dn!

If y e11 y e22 ...y
en
n 6= yd11 yd22 ...y

dn
n , (xd11 xd22 ...x

dn
n , y

e1
1 y e22 ...y

en
n ) = 0

If ∃di ≥ p, d1!d2!...dn! = 0⇒ P ∈ ker
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Current Work: The c=0 Case

B = A/ ker(β)

dim(Bd) = |{xd11 xd22 ...x
dn
n |di < p∀i ,

∑
di = d}|

Theorem

When c = 0, the Hilbert series is just the generating function
(1 + t + t2 + ...+ tp−1)n−1.
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Current and Future Work - p Dividing n

As mentioned before, Devadas and Sun proved that the
Hilbert Series is (1 + t + ...+ tp−1)n−1, unless
c ∈ {−1, 1, ..., p−12 }.
We have written some code to compute Hilbert series.

Lemma

For K = F3 and p = n = 3, c = 0, 1, 2 all give (1 + t + t2)2.

Lemma

For K = F5 and p = n = 5, c = 4 = −1 gives
(1 + 3t + t2)(1 + t + t2 + t3 + t4) (instead of
((1 + t + t2 + t3 + t4)4).
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