Monodromy Groups of Indecomposable Rational Functions

Franklyn H. Wang

Thomas Jefferson High School of Science and Technology
PRIMES conference, May 20th, 2017
Mentor: Michael E. Zieve, University of Michigan

A Motivating Theorem

- Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients.

Theorem (Carney, Hortsch, Zieve)

values.

A Motivating Theorem

- Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients.

Theorem (Carney, Hortsch, Zieve)

For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

A Motivating Theorem

- Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients.

Theorem (Carney, Hortsch, Zieve)

For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

- Restate: $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is (≤ 6)-to- 1 over all but finitely many values.

A Motivating Theorem

- Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients.

Theorem (Carney, Hortsch, Zieve)

For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

- Restate: $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is (≤ 6)-to- 1 over all but finitely many values.
- Example: $f(X)=X^{2}$. The only preimages of 4 are 2 and -2 .

A Motivating Theorem

- Let $\mathbb{Q}[X]$ be the set of polynomials with rational coefficients.

Theorem (Carney, Hortsch, Zieve)

For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

- Restate: $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is (≤ 6)-to- 1 over all but finitely many values.
- Example: $f(X)=X^{2}$. The only preimages of 4 are 2 and -2 .
- Surprise! Six does not depend on the degree of the polynomial.

Generalization to rational functions

Theorem (Carney, Hortsch, Zieve)
For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

- Want analogue when $f(X)$ is a rational function.

Polynomials are a special class of rational functions

A rational function version of this theorem would generalize
Mazur's theorem on uniform boundedness of rational torsion on
elliptic curves.

Generalization to rational functions

Theorem (Carney, Hortsch, Zieve)

For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

- Want analogue when $f(X)$ is a rational function.
- Polynomials are a special class of rational functions.

Generalization to rational functions

Theorem (Carney, Hortsch, Zieve)

For any $f(X) \in \mathbb{Q}[X]$, all but finitely many rational numbers have at most six rational preimages under f.

- Want analogue when $f(X)$ is a rational function.
- Polynomials are a special class of rational functions.
- A rational function version of this theorem would generalize Mazur's theorem on uniform boundedness of rational torsion on elliptic curves.

Indecomposable rational functions

Write $f=f_{1}\left(f_{2}\left(\ldots\left(f_{k}(X)\right)\right)\right.$ where each f_{i} is an indecomposable rational function (i.e., it is not the composition of lower-degree rational functions).

Example: X^{5} is indecomposable, but X^{6} is not

Theorem (Neftin, Zieve)

Indecomposable rational functions

Write $f=f_{1}\left(f_{2}\left(\ldots\left(f_{k}(X)\right)\right)\right.$ where each f_{i} is an indecomposable rational function (i.e., it is not the composition of lower-degree rational functions).

Example: X^{5} is indecomposable, but X^{6} is not.

Indecomposable rational functions

Write $f=f_{1}\left(f_{2}\left(\ldots\left(f_{k}(X)\right)\right)\right.$ where each f_{i} is an indecomposable rational function (i.e., it is not the composition of lower-degree rational functions).

Example: X^{5} is indecomposable, but X^{6} is not.

Theorem (Neftin, Zieve)

If n is a sufficiently large integer which is not prime, square, or triangular, then every indecomposable $f(X) \in \mathbb{C}(X)$ of degree n behaves like a random degree- n rational function.

Monodromy groups

For $f(X) \in \mathbb{C}(X)$ of degree n, every point which is not a critical value will have n distinct preimages. Pick one such point p, and write $f^{-1}(p)=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$.

Definition of a monodromy group

Consider a loop τ in \mathbb{C} which starts and ends at p, and doesn't go through any critical values of $f(X)$. For each z_{i}, there is a unique path σ_{i} starting at z_{i} which maps to τ under f. Since τ starts and ends at p, the ending point of σ_{i} is some $z_{j}=z_{\pi(i)}$, where π is a permutation of $\{1,2, \ldots, n\}$. The set of π 's produced from all such loops τ forms a group of permutations of $\{1,2, \ldots, n\}$, called the monodromy group of $f(X)$.

Monodromy groups of indecomposable rational functions

- "Random" degree- n rational function should have monodromy group A_{n} or S_{n}. We want to find all exceptions.

Monodromy groups of indecomposable rational functions

- "Random" degree- n rational function should have monodromy group A_{n} or S_{n}. We want to find all exceptions.
- Work of many mathematicians (Ritt, Zariski, Guralnick, Thompson, Aschbacher, ...)

Monodromy groups of indecomposable rational functions

- "Random" degree- n rational function should have monodromy group A_{n} or S_{n}. We want to find all exceptions.
- Work of many mathematicians (Ritt, Zariski, Guralnick, Thompson, Aschbacher, ...)
- One of the hardest cases is when the monodromy group is A_{d} or S_{d} for some $d \neq \operatorname{deg}(f)$.

Monodromy groups of indecomposable rational functions

- "Random" degree- n rational function should have monodromy group A_{n} or S_{n}. We want to find all exceptions.
- Work of many mathematicians (Ritt, Zariski, Guralnick, Thompson, Aschbacher, ...)
- One of the hardest cases is when the monodromy group is A_{d} or S_{d} for some $d \neq \operatorname{deg}(f)$.
- Others have made progress, but we have resolved it completely.

Tools

- Aschbacher-Scott classification of primitive permutation groups
- Classification of triply transitive permutation groups
- Representation theory of symmetric groups and wreath products
- Riemann-Hurwitz genus formula
- Riemann's existence theorem and facts about fundamental groups
- Various computer programs and other arguments involving combinatorics and Galois theory

Status of Project

Main Result

If $f(X) \in \mathbb{C}(X)$ is indecomposable of degree n, and the monodromy group G of $f(X)$ is A_{d} or S_{d} for some $d \neq n$, then either $n=d(d-1) / 2$ or $d \leq 28$, where in either case we know all possibilities for the permutation action of G and for the ramification of $f(X)$.

Status of Project

Main Result

If $f(X) \in \mathbb{C}(X)$ is indecomposable of degree n, and the monodromy group G of $f(X)$ is A_{d} or S_{d} for some $d \neq n$, then either $n=d(d-1) / 2$ or $d \leq 28$, where in either case we know all possibilities for the permutation action of G and for the ramification of $f(X)$.

- We are now working towards a similar result when
$L^{k} \leq G \leq \operatorname{Aut}\left(L^{k}\right)$ for some nonabelian simple group L and some $k>1$ (currently done when $k=2$ or $k>8$). A team of group theorists is doing the same when $k=1$ and L is not alternating.

Status of Project

Main Result

If $f(X) \in \mathbb{C}(X)$ is indecomposable of degree n, and the monodromy group G of $f(X)$ is A_{d} or S_{d} for some $d \neq n$, then either $n=d(d-1) / 2$ or $d \leq 28$, where in either case we know all possibilities for the permutation action of G and for the ramification of $f(X)$.

- We are now working towards a similar result when
$L^{k} \leq G \leq \operatorname{Aut}\left(L^{k}\right)$ for some nonabelian simple group L and some $k>1$ (currently done when $k=2$ or $k>8$). A team of group theorists is doing the same when $k=1$ and L is not alternating.
- Once these two projects are finished, we will know all indecomposable degree- $n f(X) \in \mathbb{C}(X)$ whose monodromy group is not A_{n} or S_{n}.

Acknowledgements

I would like to thank the following individuals, for without any of them none of this would have been possible.

Acknowledgements

I would like to thank the following individuals, for without any of them none of this would have been possible.

- Dr. Michael Zieve, for suggesting this project and being my PRIMES mentor

Acknowledgements

I would like to thank the following individuals, for without any of them none of this would have been possible.

- Dr. Michael Zieve, for suggesting this project and being my PRIMES mentor
- Dr. Danny Neftin, for checking some of the proofs in this paper, and for resolving the problem for sufficiently large n with Dr. Zieve

Acknowledgements

I would like to thank the following individuals, for without any of them none of this would have been possible.

- Dr. Michael Zieve, for suggesting this project and being my PRIMES mentor
- Dr. Danny Neftin, for checking some of the proofs in this paper, and for resolving the problem for sufficiently large n with Dr. Zieve
- the MIT Math Department

Acknowledgements

I would like to thank the following individuals, for without any of them none of this would have been possible.

- Dr. Michael Zieve, for suggesting this project and being my PRIMES mentor
- Dr. Danny Neftin, for checking some of the proofs in this paper, and for resolving the problem for sufficiently large n with Dr. Zieve
- the MIT Math Department
- the MIT-PRIMES program

