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Abstract

Hall-Littlewood polynomials are important functions in various fields of mathematics and quantum physics,
and can be defined combinatorially using a model of path ensembles. Wheeler and Zinn-Justin applied
a reflection construction to this model to obtain an expression for type BC Hall-Littlewood polynomials.
Borodin applied a single-parameter deformation to the model and obtained a formula for generalized Hall-
Littlewood polynomials. Borodin has asked whether a similar generalization could be applied to type BC
Hall-Littlewood polynomials. We present the model incorporating Borodin’s generalization. We also ob-
tain expressions for polynomials that were previously studied by Borodin, in addition to an expression for
generalized type BC Hall-Littlewood polynomials.

1 Introduction

Both type A and type BC Hall-Littlewood polynomials are useful for modeling systems of particles in
quantum physics. Since these models are idealized and real systems have a lot of parameters that can affect
the systems, generalizing the model with additional parameters can help to more accurately describe physical
systems.

Hall-Littlewood polynomials (also referred to as type A Hall-Littlewood polynomials) are symmetric
functions that are a single-parameter deformation of the Schur polynomials and are given by the following
expression [1] (where the elements of Sn act by permuting the variables xi in the obvious way):

Pλ(x1, . . . , xn; t) =
1

vλ(t)

∑
σ∈Sn

σ

 ∏
1≤i≤n

xλii
∏

1≤i<j≤n

xi − txj
xi − xj

 .

Wheeler and Zinn-Justin [2] constructed hyperoctahedrally symmetric type BC Hall-Littlewood polynomials
by modifying a statistical mechanical model that generated the aforementioned type A Hall-Littlewood
polynomials and obtained a symmetrization presentation (where the elements of Hn

∼= Sn n {±1}n act by
permuting and inverting the variables xi). These functions are Laurent polynomials and have two additional
parameters, γ and δ. They are given by the following expression:

Kλ(x±1
1 , . . . , x±1

n ; t; γ, δ) =

1

vλ(t)

∑
ω∈Hn

ω

 ∏
1≤i≤n

(
xλii

(1− γx̄i)(1− δx̄i)
1− x̄2

i

) ∏
1≤i<j≤n

(xi − txj)(1− tx̄ix̄j)
(xi − xj)(1− x̄ix̄j)

 . (1)

Separately, Borodin [3] generalized the model by adding an additional parameter s. Wheeler and Zinn-
Justin, in [2], mention this generalization but do not incorporate it into their results. We incorporate the
generalization in [3] to the model and framework in [2] and obtain the same polynomial as in [3], up to a
constant factor, to generalize type A Hall-Littlewood polynomials:

Fλ(x1, . . . , xn; t, s) =
(s2; t)λ
vλ(t)

· 1∏
1≤i≤n(1− sxi)

∑
σ∈Sn

σ

 ∏
1≤i≤n

(
xi − s
1− sxi

)λi ∏
1≤i<j≤n

xi − txj
xi − xj

 .
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We also apply the generalized weights in [3] to the type BC polynomials in (1) to obtain our main result, a
family of symmetric polynomials that we call generalized type BC polynomials:

Hλ(x±1
1 , . . . , x±1

n ; t, s; γ, δ) =

(s2; t)λ
vλ(t)

∑
ω∈Hn

ω

 ∏
1≤i≤n

((
xi − s
1− sxi

)λi (1− γx̄i)(1− δx̄i)
(1− x̄2

i )(1− sxi)

) ∏
1≤i<j≤n

(xi − txj)(1− tx̄ix̄j)
(xi − xj)(1− x̄ix̄j)

 .

2 Definitions and Notation

2.1 Integrable model, basic definitions

We set up an integrable model as in [2], with an infinite dimensional vector space V representing occupation
numbers of particles:

V = Span{|m0〉0 ⊗ |m1〉1 ⊗ |m2〉2 ⊗ . . . },

where mi ≥ 0 for all i ≥ 0 and only finitely many of the mi are nonzero. Also, we let Vi denote Span{|mi〉i},
so that V = V0 ⊗ V1 ⊗ V2 ⊗ . . .. We also define |λ〉 for a partition λ:

|λ〉 = |m0(λ)〉0 ⊗ |m1(λ)〉1 ⊗ |m2(λ)〉2 ⊗ · · · ∈ V,

where mi(λ) denotes the number of instances of i in λ. Note that these form a basis of V ; let 〈λ| ∈ V ∗

denote the corresponding element of |λ〉 in the dual basis of the basis of partitions.
We define x̄ to be 1

x . We also define the standard q-Pochhammer symbol:

(a; q)n = (1− a)(1− qa) . . . (1− aqn−1),

with the right hand side vacuously equal to 1 when n = 0. Moreover, we extend this symbol to partitions:

(a; q)λ =
∏
i∈λ

(a; q)i,

where the product is taken with multiplicity.
Furthermore, we define the function vλ(t) as in [1]:

vλ(t) =

∞∏
i=0

mi(λ)∏
j=1

1− tj

1− t

 .

2.2 Regular and normalized R matrix, Yang-Baxter equation, and unitarity
relation

We define the R matrix as in [2], which operates on the auxiliary two-dimensional vector spaces Wa and Wb.

Rab(x/y) =


1−tz
1−z 0 0 0

0 t (1−t)z
1−z 0

0 1−t
1−z 1 0

0 0 0 1−tz
1−z


ab

,

where z = x/y. Here the subscripts a and b indicate that the R matrix operates on Wa ⊗Wb. The two
elements of the bases of these auxiliary spaces are represented by the symbols and (so the R matrix
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operates on the basis ( ⊗ , ⊗ , ⊗ , ⊗ )). These symbols represent high-spin and low-spin particles,
respectively. This matrix is represented graphically as a crossing of two lines, as in equation (10) of [2].

The R matrix satisfies the Yang-Baxter equation [2]:

Rab(x/y)Rac(x/z)Rbc(y/z) = Rbc(y/z)Rac(x/z)Rab(x/y).


x

y

z

=
y

x

z


In these diagrams, a crossing of the lines represents an application of the R matrix, and each line is associated
with a different auxiliary space. The variable labeling each line represents the argument used for theR matrix.

The R matrix also satisfies the unitarity relation [2]:

Rab(x/y)Rba(y/x) =
(y − tx)(x− ty)

(y − x)(x− y)
.

 x

y

=
(y − tx)(x− ty)

(y − x)(x− y)
×

x

y


We also define R, the normalized R matrix, to be a multiple of the R matrix such that the unitarity relation
has right hand side 1:

Rab(x/y) =
1− z
1− tz

Rab(x/y),

so that
Rab(x/y)Rba(y/x) = 1.

2.3 L operator, intertwining equations

The integrable model in [2] is based on the L operator, an element of End(Wa ⊗ V ), where Wa is a two-
dimensional auxiliary space. We define a generalized version of this L operator with weights as in [3], defining
La,i(x) ∈ End(Wa ⊗ Vi) by its operation on the basis elements of Vi as follows:

La,i(x) |m〉i =
1

1− sx

(
(x− stm) |m〉i (1− s2tm)x |m+ 1〉i

(1− tm) |m− 1〉i (1− stmx) |m〉i

)
a

,

where the 2 by 2 matrix acts on Wa. The components of this operator are graphically represented as follows:

m

m

m+1

m

m−1

m

m

m

x−stm
1−sx

(1−s2tm)x
1−sx

1−tm
1−sx

1−stmx
1−sx

In the graphical representation of an L operator (a “tile”), the number of lines entering at the top corresponds
with the basis element of Vi on which it is acting, and the number of lines exiting the bottom corresponds
with the basis element of its output. By Proposition 2.5 of [3], we have an intertwining equation analogous
to equation (14) of [2]:

Rab(x/y)La,i(x)Lb,i(y) = Lb,i(y)La,i(x)Rab(x/y).

 x

y

=
x

y
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We also define a dual operator L∗:

L∗a,i(x) =
x− s
1− sx

La,i(x̄),

so that:

L∗a,i(x) |m〉i =
1

1− sx

(
(1− stmx) |m〉i (1− s2tm) |m+ 1〉i

(1− tm)x |m− 1〉i (x− stm) |m〉i

)
a

.

The following intertwining equations also hold:

Rab(xy)La,i(x)L∗b,i(y) = L∗b,i(y)La,i(x)Rab(xy),

 x

ȳ

=
x

ȳ



Rab(y/x)L∗a,i(x)L∗b,i(y) = L∗b,i(y)L∗a,i(x)Rab(y/x).

 x̄

ȳ

=
x̄

ȳ



2.4 Permutation R matrix, D matrix

We define the permutationRmatrix,Rρσ, as in Appendix A of [2]. In other words, if σ and ρ are permutations,
then decompose σρ−1 into a series of transpositions, and let Rρσ be the product of the corresponding R
matrices. If ρ is the identity permutation, we abbreviate Rρσ by simply Rσ.

Similarly, we define the D matrix D1...n identically to the F matrix in Appendix A of [2]. (We have
changed the variable name because of a conflict with F functions.) The D matrix, D1...n ∈ End(W1 ⊗ . . .⊗
Wn), is defined so that it satisfies:

Fσ(1)...σ(n)R1...n
σ = F1...n.

2.5 Boundary covector, boundary B operator, reflection and fish equations

We define the boundary covector 〈K|aā ∈W ∗a ⊗W ∗ā identically to section 2.7 of [2]:

〈K|aā =
(
1 0

)
a
⊗
(
0 1

)
ā
− t
(
0 1

)
a
⊗
(
1 0

)
ā
.

The boundary covector is represented graphically by a U-turn vertex as in the following equation. When
interpreted as a four-dimensional vector, it has two nonzero components:

〈K|aā

(
1
0

)
a

⊗
(

0
1

)
ā

= • = 1, 〈K|aā

(
0
1

)
a

⊗
(

1
0

)
ā

= • = −t.

We also define the boundary B operator B
(γ)
a,i (x) ∈ End(Wa ⊗ Vi) as in [2]. Letting m be the number of

particles at the top of the tile, we define the boundary operator by its action on the basis element |m〉i of Vi:

B(γ)
a (x)|m〉i =

(
tm |m〉i γxtm |m+ 1〉i

(1− tm) |m− 1〉i (1− γxtm) |m〉i

)
a

.

The graphical representation of this boundary operator is a tile with the parameter γ inside it:

x γ

Additionally, we define a combination of the boundary covector and the boundary operator:

〈K(x; γ, δ)|aā = 〈K|aāB
(γ)
ā,−2(x̄)B

(δ)
ā,−1(x̄)B

(γ)
a,−2(x)B

(δ)
a,−1(x) = •

x̄

x

δγ

δγ
.

The above expression is an operator in W ∗a ⊗W ∗ā ⊗ End(V̂ ), where V̂ = V−2 ⊗ V−1.
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2.6 Single- and double-row transfer matrices

We also define row transfer matrices as in sections 2.6 and 2.9 of [2]. The single-row transfer matrix
Ta(x) ∈ End(Wa ⊗ V ) is defined by:

Ta(x) =

∞∏
i=0

La,i(x) = x · · · .

We assume that
∣∣∣ x−s1−sx

∣∣∣ < 1 so that the product converges to 0 unless there are only tiles sufficiently far

to the right. Recall that here Wa is a 2-dimensional auxiliary space and V = V0 ⊗ V1 ⊗ V2 ⊗ . . . . If we treat
Ta(x) as a 2 by 2 matrix over Wa with components in End(V ), then it only has two nonzero components:

Ta(x) =

(
0 T+(x)

0 T−(x)

)
a

=

 x · · · x · · ·

x · · · x · · ·


a

.

Similarly, we define the double-row transfer matrix Taā(x; γ, δ) ∈W ∗a ⊗W ∗ā ⊗ End(V̂ ⊗ V ) as in [2]:

Taā(x; γ, δ) = 〈K(x; γ, δ)|aā
∞∏
i=0

La,i(x̄)

∞∏
j=0

La,j(x) = •
· · ·

· · ·x̄

x

δγ

δγ
.

We consider its only nonzero component:

T−−(x; γ, δ) = •
· · ·

· · ·x̄

x

δγ

δγ
.

3 Results

In this section, we derive the F function of [3] in terms of our notation. (There is a difference of a constant
factor, but it is not important.)

3.1 Definition of F function

We define the F function as follows: ∏
1≤i≤n

xi

Fλ(x1, . . . , xn; t, s) = 〈λ|T+(xn) . . . T+(x1) |0〉

3.2 Expression for F functions

We now obtain the symmetrization representation for F functions of [3] (a family of symmetric polynomials
indexed by partitions) using the techniques of [2]. Define the column transfer matrix, an element of End(W1⊗
. . .⊗Wn ⊗ Vi):

S[i](x1, . . . , xn) = Ln,i(xn) . . . L1,i(x1) ∈ End(W1 ⊗ · · · ⊗Wn ⊗ Vi).

We also define the components of this matrix in Vi (note that these components are independent of i):

S[l,m](x1, . . . , xn) = 〈l|i S
[i](x1, . . . , xn) |m〉i ∈ End(W1 ⊗ · · · ⊗Wn).
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We also define a twisted column transfer matrix:

S̃
[i]
1...n(x1, . . . , xn) = D1...n(x1, . . . , xn)S

[i]
1...n(x1, . . . , xn)D−1

1...n(x1, . . . , xn).

This twisted column transfer matrix, by the results of Appendix A of [2], is independent of its permutation.
Now we obtain an expression for the twisted column transfer matrix:

Theorem 1. If 0 ≤ m ≤ n, then

S̃[m,0]x1, . . . , xn = (s2; t)m
∑

I∈{1,...,n}
|I|=m

⊗
i∈I

(
0 xi

1−sxi
0 0

)
i

⊗
j 6∈I

(
xj−s
1−sxj

∏
k∈I

xj−txk
xj−xk 0

0 1

)
j

(2)

.

Proof. The proof is almost identical to that of Theorem 2 of [2]; we replicate it here. As in (43) of [2], we
have:[

S̃
[m,0]
1...n (x1, . . . , xn)

]j1...jn
i1...in

=
[
S

[m,0]
σ(1)...σ(n)

(
xσ(1), . . . , xσ(n)

)
R1...n
σ Rρ1...n

]j1...jn
i1...in

∏
1≤k<l≤n

b−1
jk,jl

(xk, xl), (3)

where iσ(1) ≥ · · · ≥ iσ(n) and jρ(1) ≤ · · · ≤ jρ(n). Furthermore, from pg. 14 of [2],

[
S

[m,0]
σ(1)...σ(n)

(
xσ(1), . . . , xσ(n)

)
R1...n
σ Rρ1...n

]j1...jn
i1...in

=

δ0,#{k:ik= ,jk= }
∏

k:ik=

∏
l:jl=

(xl − xk)

(xl − txk)
×


m

0

xl:il=
xl:jl=

xk:ik=
jk=


. (4)

Furthermore, similarly to (46) of [2],

m

0

xl:il=
xl:jl=

xk:ik=
jk=

=

m

0

xl:il=
xl:jl=

xk:ik=
jk=

= δm,#{k:ik= ,jk= }(s
2; t)m

∏
l:
{
il=
jl=

xl − s
1− sxl

∏
k:
{
ik=
jk=

xk
1− sxk

. (5)

Note that we also have: ∏
1≤k<l≤n

b−1
jk,jl

(xk, xl) =
∏

k:jk=

∏
l:jl=

(xl − txk)

(xl − xk)
. (6)

Now, combining (3), (4), (5), and (6), we get:[
S̃

[m,0]
1...n (x1, . . . , xn)

]j1...jn
i1...in

=

δ0,#{k:ik= ,jk= }δm,#{k:ik= ,jk= }
∏

l:
{
il=
jl=

xl − s
1− sxl

∏
k:
{
ik=
jk=

xk
1− sxk

∏
k:
{
ik=
jk=

∏
l:jl=

(xl − txk)

(xl − xk)
,

which immediately leads to the expression in (2).
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We can now use the expression for twisted transfer matrices given by (2) similarly to Lemma 3 of [2] to
recover an expression for F functions:

Theorem 2. The F functions are given by:

Fλ(x1, . . . , xn; t, s) =
(s2; t)λ
vλ(t)

· 1∏
1≤i≤n(1− sxi)

∑
σ∈Sn

σ

 ∏
1≤i≤n

(
xi − s
1− sxi

)λi ∏
1≤i<j≤n

xi − txj
xi − xj

 . (7)

Proof. We have, as a consequence of the graphical representation of
(∏

1≤i≤n xi

)
Fλ(x1, . . . , xn; t, s), that ∏

1≤i≤n

xi

Fλ(x1, . . . , xn; t, s) = 〈 , . . . , |
∞∏
i=0

S[mi(λ),0](x1, . . . , xn) | , . . . , 〉 . (8)

Now, since we also have

〈 , . . . , |D1...n = 〈 , . . . , | , D−1
1...n | , . . . , 〉 = | , . . . , 〉 ,

we can conjugate all the S matrices in (8) by D1...n to obtain twisted S matrices instead: ∏
1≤i≤n

xi

Fλ(x1, . . . , xn; t, s) = 〈 , . . . , |
∞∏
i=0

S̃[mi(λ),0](x1, . . . , xn) | , . . . , 〉

= 〈 , . . . , |
λ1∏
i=0

S̃[mi(λ),0](x1, . . . , xn) | , . . . , 〉 . (9)

Now we can use (2) to compute (9) explicitly. The S̃ operator only contains spin-raising (| 〉 → | 〉) and not
spin-lowering (| 〉 → | 〉) operators, so we can conclude that the expression in (9) is equal to the symmetriza-
tion of any single term that it gives. The simplest such term is graphically represented (where each column
is a twisted operator) as

x1

x2

x3

x4

x5

0 0 0 0 0

m0 m1 m2 m3 m4

= (s2; t)λ
∏

1≤i≤n

xi
1− sxi

∏
1≤i≤n

(
xi − s
1− sxi

)λi ∏
i,j:λi>λj

xi − txj
xi − xj

,

where the diagram is for the specific case λ = (4, 3, 3, 1, 0) and the equality is obtained using (2). Thus we
have: ∏

1≤i≤n

xi

Fλ(x1, . . . , xn; t, s) = (s2; t)λ
∑

σ∈Sn/Sλn

σ

 ∏
1≤i≤n

xi
1− sxi

∏
1≤i≤n

(
xi − s
1− sxi

)λi ∏
i,j:λi>λj

xi − txj
xi − xj

 .

Canceling a factor of
∏

1≤i≤n xi from both sides and using the results of Section 1, Chapter III of [1], we
obtain (7) as desired.
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3.3 Definition of and expression for H functions

We define the H functions to generalize type BC functions in a similar way: ∏
1≤i≤n

xi

Hλ(x1, . . . , xn; t, s; γ, δ) = 〈0̂| ⊗ 〈λ|T−−(xn; γ, δ) . . .T−−(x1; γ, δ) |0〉 ⊗ |0̂〉.

The double-row column transfer matrices are defined as follows:

S[i](x±1
1 , . . . , x±1

n ) = Ln̄,i(x̄n)Ln,i(xn) . . . L1̄,i(x̄1)L1,i(x1)

∈ End(W1̄ ⊗W1 ⊗ · · · ⊗Wn̄ ⊗Wn ⊗ Vi),

B[i](x±1
1 , . . . , x±1

n ; γ) = B
(γ)
n̄,i (x̄n)B

(γ)
n,i (xn) . . . B

(γ)

1̄,i
(x̄1)B

(γ)
1,i (x1)

∈ End(W1̄ ⊗W1 ⊗ · · · ⊗Wn̄ ⊗Wn ⊗ Vi).

Their components in Vi are:

S[l,m](x±1
1 , . . . , x±1

n ) = 〈l|i S
[i](x±1

1 , . . . , x±1
n ) |m〉i ,

B[0,0](x±1
1 , . . . , x±1

n ; γ) = 〈0|i B
[i](x±1

1 , . . . , x±1
n ; γ) |0〉i .

Then we can re-express the H functions in terms of column transfer matrices instead of row transfer matrices:

n∏
i=1

(xi − tx̄i)Hλ(x±1
1 , . . . , x±1

n ; t; γ, δ) =

〈K|B[0,0](x±1
1 , . . . , x±1

n ; γ)B[0,0](x±1
1 , . . . , x±1

n ; δ)

∞∏
i=0

S[mi(λ),0](x±1
1 , . . . , x±1

n ) | , . . . , 〉 ,

where

〈K| =
n⊗
k=1

〈K|kk̄ . (10)

We now define twisted versions of these operators using the double-row D matrix D1...n:

S̃[i](x±1
1 , . . . , x±1

n ) = D1...nS[i](x±1
1 , . . . , x±1

n )D−1
1...n,

B̃[i](x±1
1 , . . . , x±1

n ; γ) = D1...nB[i](x±1
1 , . . . , x±1

n ; γ)D−1
1...n,

〈K̃| = 〈K|D−1
1...n.

Now, as a consequence of (57) and (58) of [2], as well as (2), that:

Remark 1. We have, where xk̄ = x̄k,

S̃[m,0](x±1
1 , . . . , x±1

n ) =
∑

I⊂{1,1̄,...,n,n̄}
|I|=m

⊗
i∈I

(
0 xi

1−sxi
0 0

)
i

⊗
j 6∈I

(
xj−s
1−sxj

∏
k∈I

xj−txk
xj−xk 0

0 1

)
j

,

B̃[0,0](x±1
1 , . . . , x±1

n ; γ) =
⊗

i∈{1,1̄,...,n,n̄}

(
1 0
0 1− γxi

)
i

,

n∏
i=1

1

(xi − tx̄i)
〈K̃| =

∑
{ε1,...,εn}∈{±1}n

n∏
k=1

(
xεkk

1− x2εk
k

) ∏
1≤k<l≤n

(
1− txεkk x

εl
l

1− xεkk x
εl
l

) n⊗
k=1

〈−εk|k ⊗ 〈εk|k̄.

We can then similarly use (2) and Theorem 3 of [2] to obtain a symmetrization expression for H functions:
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Theorem 3. The H functions are given by:

Hλ(x±1
1 , . . . , x±1

n ; t, s; γ, δ) =

(s2; t)λ
vλ(t)

∑
ω∈Hn

ω

 ∏
1≤i≤n

((
xi − s
1− sxi

)λi (1− γx̄i)(1− δx̄i)
(1− x̄2

i )(1− sxi)

) ∏
1≤i<j≤n

(xi − txj)(1− tx̄ix̄j)
(xi − xj)(1− x̄ix̄j)

 .

Proof. The proof is analogous to Lemma 4 and Remark 5 of [2].

4 Discussion and Future Work

Future work may include creating dual functions to the F and H functions, analogous to the Q and L
functions in [2], using L∗ matrices instead of L matrices. These dual functions could then be used to prove
analogues of the identities in [2]. Also, skew F and H functions like those in [3] can be created by allowing
both end conditions, rather than just one, in the graphical representations to vary. It then may be possible
to use this to extend some identities in [3] from type A to type BC polynomials.
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