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Abstract

We report a method for metric learning using an extended variational autoencoder.

Our architecture, based on deep learning, provides the ability to learn a transformation-

invariant metric on any set of data.

Our architecture consists of a pair of encoding and decoding networks. The encoder

network converts the data into differentiable latent representations, while the decoder

network learns to convert these representations back into data. We then apply an

additional set of losses to the encoder network, forcing it to learn codings that are

independent of orientation and reflect the desired metric. Then, our architecture is

able to predict the real metric for a set of data points, and can generate data points

that match a set of requirements.

We demonstrate our networks ability to calculate the maximum overlap area of

any two shapes in one shot; we also demonstrate our networks success at matching

halves of geometric shapes. We then propose the applications of our network to areas

of biochemistry and medicine, especially generative drug discovery.
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Introduction

The fundamental goal of drug design is to develop molecules that fit certain properties.

Given that the size of the chemical drug space is estimated to be 1060,1 it is reasonable to

expect that there are subsets of this space that match any reasonable selection of biochemical

requirements. Since current drug screening methods often depend on automated testing of

millions of molecules in laboratories, only about 106 molecules have ever been synthesized.2

Attempts to improve those numbers with computational methods generally focus on virtual

screening, which still requires advanced simulations and great computational power; as a

result, the number of chemical structures ever considered for drugs has been put at 108.2 In

this paper, we propose a step towards generative drug discovery by applying metric learning

to differentiable representations of molecules. We then present experimental verification on

a toy task of shape matching, propose applications of our architecture to drug design, and

discuss further uses of our system in other fields.

The main design of our architecture is based on the idea of an autoencoder, a neural

network used for learning features without supervision. In this paper, we propose a net-

work based on an extended variational autoencoder, which we call a magic autoencoder, for

implementing metric learning.

Related work

When developing this system, we were greatly inspired by advances in Bayesian inference and

deep learning,3 as well as recent successes of autoencoders in providing data-driven, contin-

uous representations of molecules.4 Further, we looked at existing molecular representations

through molecular convolutions,5 and abstract metricized representations of concepts, such

as those described in the word2vec model by Mikolov et al.6 7
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Model

To describe our model, we discuss the uses of variational autoencoders (abbreviated VAEs)

on transforming data into a differentiable representation. VAEs consist of two networks—an

encoder network and a decoder network, both often recurrent neural networks.8 The encoder

network learns to represent the input data in a latent space of arbitrary dimensionality but

limited hidden unit size, thus extracting important features from the data. The decoder net-

work learns to symmetrically convert this latent representation back into data space. VAEs

employ two loss terms, the reconstruction loss and the latent loss, for optimizing recon-

struction quality while maintaining a reasonable exploration of latent space.3 If we sample

the latent space on a regular interval, we can see that VAEs generally learn a continuous

representation of the data, as demonstrated for handwritten digits in Figure 1.1. However,

the arrangement of the latent space is not necessarily constrained in any meaningful way.

Thus, we add two loss terms to a VAE-like structure, one term forcing the encoder network to

learn transformation invariant representations of the input data, and the other morphing the

latent space into one with a meaningfully defined metric. These losses are then minimized

with Adam, a stochastic optimization algorithm introduced by Kingma et al.9

Network architecture

The way our network learns is based on pairs of data objects with some defined metric

between them, such as binding affinity; the actual input to our network consists of four

pieces of information. First, the network takes two vectors representing the input object

and a randomly rotated and translated version of the input object—for instance, an EM

map of a molecule and an EM map of the same molecule in a random spatial orientation.

Next, the network is given the second input object, such as an EM map of another molecule.

Finally, the network is given the value of the metric between these two objects, such as the

binding affinity. The three vectors are all fed into the encoder network, producing latent
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Figure 1.1: a variational autoencoder trained on handwritten digits generates a continuous
representation of the data. Here, the dimensionality of the latent space was restricted to 2
and mapped on a plane. However, for actual data, the dimensionality of the latent space
can easily span hundreds or even thousands of dimensions.
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representations of the three vectors, which well call z, zr, and zb, respectively. Now, the loss

term for the autoencoder is defined as follows:

DKL(qφ(z|x)||pφ(z))− Ez∼qφ [log(pφ(x|z))] +
10

n

n∑
i=1

(z − zr)
2 (1)

This loss term is essentially the same as that for a VAE; however, there is an added

term—namely, the squared difference between the latent representation of the first data

point and the latent representation of the rotated first data point. This incentivises the

encoder to learn a transformation-independent coding, which is one of the crucial steps for

structure-based one-shot learning. The metricization loss is defined as

‖−→z ‖ ‖−→zb‖
−→z · −→zb

−m (2)

where m is the value of the metric between the first object and the second object. That

is, we penalize any latent representations of the two objects where the inverse of the cosine

similarity between them is not equal to the metric, based on how far our approximation is

from the actual value. These two losses combined should be able to learn the following: first,

a translation and rotation-invariant encoding of the input data; second, a meaningful metric

over the differentiable and compact latent space; and finally, a decoder from the latent space

back to data space. Generally, we train the two loss terms with separate optimizers in order

to have finer control over the learning rates; however, this is not strictly necessary. Figure

1.2 contains a complete representation of the model architecture.

Experiments

Implementation

All of our experiments were implemented in Tensorflow and tested on an Intel(R) Xeon(R)

E5-2620 v4 CPU and accelerated with one Nvidia GPU, unless otherwise specified. An

implementation of our architecture can be found at [REDACTED].
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Figure 1.2: the magic autoencoder. The losses are the reconstruction loss, which makes the
autoencoder learn proper encoding and decoding functions; the latent loss, which lets the
autoencoder reasonably arrange the latent space; the deformation loss, which enforces trans-
formation invariance over the learned representations; and the metric loss, which implements
the metric learning itself.
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Shape overlap

The main dataset we used for testing this network is the shape overlap dataset.10 Calculating

the maximum overlap area between two shapes is an extremely complex problem, somewhat

representative of drug docking in two dimensions. While it is simple to come up with an

algorithm that samples thousands of configurations of the two shapes and returns the maxi-

mum discovered overlap area, such an approach would take thousands of CPU-hours for just

dozens of figures. In order to mitigate the wild inefficiency of this approach, evolutionary

algorithms may be applied, providing a significant boost in speed, and even potential in-

creases in accuracy. However, we would like to predict the answer in one shot—that is, given

two shapes, we would like a network that predicts the maximum overlap area between them

without necessarily calculating the optimal position. The shape overlap dataset provides

100,000 pairs of shapes, together with the maximum overlap area, as shown in Figure 1.3.

Figure 1.3: an example from the shape overlap dataset. The maximum overlap area between
the shape on the left and the shape on the right is equal to 1783 pixels, which our network
predicts.

Our network is set up according to our architecture. The first input is a vector repre-

senting the first image, the second input is a randomly transformed variation of the first

image, the third input is the second image, and the last input is the maximum overlap area

between the two images. These inputs are fed into our network, with the two optimizers’
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respective learning rates being 1e-8 and 1e-10. Our fully-connected encoder network con-

tains 40000, 500, 500, and 500 neurons in its four layers, while the two-layer fully-connected

decoder network has 500 and 500. If we set the number of latent dimensions to 2 and plot

the resulting images, we can see in Figure 1.4 that the autoencoder does indeed learn a

continuous representation of the input. However, as a result of experimental verification, we

have determined that a latent space dimensionality of 80 tends to work best.

Shape competion

Another method of experimental verification we used on our network was testing it on the

MSHAPES shape completion task.11 The dataset contains 50,000 pairs of geometric shapes

cut into halves. The three inputs for the autoencoder become, respectively, the first half of

the shape, the rotated first half of the shape, and the second half of the shape. Since this

is a binary classification task, we assign an arbitrary threshold for the metric–in our case,

we said that a cosine distance between two encoded vectors of greater than 1.0 meant that

the halves do not match, while a cosine distance of 1.0 or less meant that the halves match

together to form a shape. Our network excelled at this task, performing significantly better

than random, as discussed in the next section. We note that matching shapes is recognized as

an easier task than calculating the maximum overlap area; however, the networks excellent

performance at this task underlines its generalizability and extensibility to different areas of

neural predictions, such as binary classification.

Results

Shape overlap prediction

To experimentally verify our network, we compared the mean-squared error in predicting

the areas between one batch of 24 pairs of shapes and the error in guessing the overlap areas

in the batch. The experimental results are shown in Table 1.

Using a two-tailed z-test where the null hypothesis is that the error of the autoencoder
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Figure 1.4: a sampling of the 2d latent space for the shape matching tasks. Here, only the
first, non-rotated images are displayed, so distances are meaningless, since the metric is not
defined. If we look across the rows and columns, we can see a that the network learned a
continuous latent representation of the shapes, as demonstrated by the relatively smooth
transition from depictions of wrenches to stars, to scissors to moose.
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Table 1: Comparison of näıve error and autoencoder error

Trial Näıve method error Magic autoencoder error
1 6.39e6 4.78e6
2 5.06e6 4.22e6
3 5.75e6 2.75e6
4 7.36e6 5.88e6
5 7.12e6 4.32e6
6 5.64e6 6.46e6

is identical to the naive methods error, and the alternate hypothesis is that the error of

the magic autoencoder is different than that of the naive method, we obtain a p-value of

0.049165. Since p<0.05, we conclude that our architecture is significantly better at predicting

the overlap area of random shapes than current methods. Thus, this lends credence to the

idea that this neural architecture is a powerful way to predict any reasonably defined metric

over arbitrary data; in this case, maximum overlap area.

Shape completion prediction

Our network performed extremely well on the shape completion task, getting near-perfect

accuracy after several hours of training on a Intel(R) Xeon(R) E5-2620 v4 CPU with one

Nvidia GPU. Table 2 compares the mean batchwise classification error between randomly

guessing the class and our networks prediction, while Figure 1.5 shows the decreasing error

of the magic autoencoders predictions as the network is trained.

Table 2: Comparison of Gaussian noise-based guessing error and magic autoencoder error

Trial Gaussian noise error Magic autoencoder error
1 1.416666667 0.286658
2 1.583333333 0.258178
3 1.416666667 0.240011
4 1.333333333 0.212152
5 1.25 0.282565
6 1.416666667 0.281238

Utilizing a two-tailed z-test where the null hypothesis is that the error of the autoencoder

is identical to the naive methods error, and the alternate hypothesis is that the error of the
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magic autoencoder is different than random, we obtain a p-value of less than 1e-7. Since

p<0.0000001, we conclude that our architecture is significantly better at connecting shapes

than random guessing. This does not come as a surprise, given our networks great perfor-

mance at the much harder task detailed above. However, the extendability of our network to

many classes of problems, such as binary classification, demonstrates that our architecture

is generalizable to any task, even with a discrete or binary metric.

Figure 1.5: the metric training loss during experimental verification of the magic autoencoder
for the shape matching dataset.
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Discussion

Based on the experimental verification we conducted, we can conclude that our architecture

is well-suited for transformation-invariantly predicting both continuous and discrete metrics

over arbitrary sets of data. The magnitude of improvement between the shape competition

result and the overlap prediction result can be explained by the fact that overlap prediction

is a significantly more difficult problem; however, our network’s performance suggests that

we can apply it to other complex tasks as well. The main task that we are applying our

network to now is metric learning over molecular data. As mentioned earlier, using EM map

representations of molecules with a metric of binding affinity has produced very encouraging

preliminary results. We plan on using this to improve over suites such as Autodock Vina and

Glide both in terms of accuracy and precision, as our network seems to beat both programs’

margins of error on two-dimensional tasks.

Finally, our network can be easily modified to fit other problems. For instance, applying

a signed modulus can extend the network to all real metrics, while increased precision can be

achieved by increasing the dimensionality of the latent space, since that allows the network

finer control over variations in latent codings. We are truly excited about future applications

of our architecture, some of which we will discuss in the next section.

Future work

Based on our current results, this network seems quite promising as a tool for learning met-

rics over latent representations of data. One simple, yet powerful, modification that could

be implemented is the addition of a spatial transform module12 to the encoder part of the

network. For instance, for overlap prediction, the decoder network would decode not the

shape itself, but rather a pixelwise transformation field for the first image that would op-

timally overlap it with the second image. The overlap area itself could then be calculated

simply by applying the transformation field. The advantage of this over the current archi-

tecture is that it would predict the proper orientation of the two shapes in addition to their
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maximum area. A similar analogy for drugs would be this network predicting the binding

position of the molecules in addition to the binding affinity. This idea could also be aided by

a discriminator network learning the autoencoder cost rather than a mathematically defined

cost, based on a similar proposition for simpler tasks in Makhzani et al.,13 which would allow

a more robust latent representation, more conducive to decoding a certain property of the

molecule.

Another potential development of this network would consist of using it for what is

known as drug-autocomplete. Given a latent space generated by our network the continuous

metric of binding affinity and the discrete metric of chemical viability, we could theoretically

convert the entire space around a certain protein back into data space, yielding tens of

potential chemically viable drug candidates with a high binding affinity. Since the number

of metrics we can apply is constrained only by the dimensionality of the latent space and

computational power, we could use millions of latent dimensions to learn metrics of FDA

approval, stability, and even cost.
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(24) Boscaini, D.; Masci, J.; Rodolà, E.; Bronstein, M. Learning shape correspondence with

anisotropic convolutional neural networks. Advances in Neural Information Processing

Systems. 2016; pp 3189–3197.

(25) Movshovitz-Attias, Y.; Toshev, A.; Leung, T. K.; Ioffe, S.; Singh, S. arXiv preprint

arXiv:1703.07464 2017,

(26) Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. IEEE transactions on pattern analysis

and machine intelligence 2016, 38, 142–158.

15



(27) Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on

graphs with fast localized spectral filtering. Advances in Neural Information Processing

Systems. 2016; pp 3844–3852.

(28) Qi, C. R.; Su, H.; Mo, K.; Guibas, L. J. arXiv preprint arXiv:1612.00593 2016,

(29) Yi, L.; Su, H.; Guo, X.; Guibas, L. arXiv preprint arXiv:1612.00606 2016,

(30) Graham, B. arXiv preprint arXiv:1505.02890 2015,

(31) Hernández-Lobato, J. M.; Pyzer-Knapp, E.; Aspuru-Guzik, A.; Adams, R. P. Dis-

tributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical

Space. NIPS Workshop on Bayesian Optimization, Barcelona, Spain. 2016.

(32) Guimaraes, G. L.; Sanchez-Lengeling, B.; Farias, P. L. C.; Aspuru-Guzik, A. arXiv

preprint arXiv:1705.10843 2017,

(33) Wallach, I.; Dzamba, M.; Heifets, A. arXiv preprint arXiv:1510.02855 2015,

(34) Xiao, D.; Yang, W.; Beratan, D. N. The Journal of chemical physics 2008, 129, 044106.

(35) Quiroga, R.; Villarreal, M. A. PloS one 2016, 11, e0155183.

(36) Arjovsky, M.; Chintala, S.; Bottou, L. arXiv preprint arXiv:1701.07875 2017,

(37) Salimans, T.; Ho, J.; Chen, X.; Sutskever, I. arXiv preprint arXiv:1703.03864 2017,

(38) Bronstein, A. M.; Bronstein, M. M.; Guibas, L. J.; Ovsjanikov, M. ACM Transactions

on Graphics (TOG) 2011, 30, 1.

(39) Rodola, E.; Bronstein, A. M.; Albarelli, A.; Bergamasco, F.; Torsello, A. A game-

theoretic approach to deformable shape matching. Computer Vision and Pattern Recog-

nition (CVPR), 2012 IEEE Conference on. 2012; pp 182–189.

16



(40) Wang, F.; Kang, L.; Li, Y. Sketch-based 3d shape retrieval using convolutional neu-

ral networks. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2015; pp 1875–1883.

(41) Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image

recognition. ICML Deep Learning Workshop. 2015.

(42) Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. e. a. Matching networks for one

shot learning. Advances in Neural Information Processing Systems. 2016; pp 3630–3638.

17




