
Theorems on Field Extensions and Radical Denesting

Abstract

The problem of radical denesting is the problem that looks into given nested radical

expressions and ways to denest them, or decrease the number of layers of radicals. This

is a fairly recent problem, with applications in mathematical software that do algebraic

manipulations like denesting given radical expressions. Current algorithms are either

limited or inefficient.

We tackle the problem of denesting real radical expressions without the use of Galois

Theory. This uses various theorems on field extensions formed by adjoining roots of

elements of the original field. These theorems are proven via the roots of unity filter and

degree arguments. These theorems culminate in proving a general theorem on denesting

and leads to a general algorithm that does not require roots of unity. We optimize this

algorithm further. Also, special cases of radical expressions are covered, giving more

efficient algorithms in these cases, spanning many examples of radicals. Additionally,

a condition for a radical not to denest is given. The results of denesting radicals over

Q are extended to real extensions of Q and also transcendental extensions like Q(t).

Finally, the case of denesting sums of radicals is explored as well.
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1 Introduction

One apparent problem in mathematics involves that of denesting radicals. The Indian

mathematician Ramanujan kept a journal of complex radical identities. Among them are the

following
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Of course, it is easy to verify these identities by taking both sides to appropriate powers. The

question is whether or not a given nested radical denests in general. Many specific cases

of denesting have been examined: for example, in [1] certain identities of Ramanujan are

generalized, and [2] deals with denesting solely square roots and gives an algorithm to denest

such a radical in general, assuming all the radicands are real. Other papers use Galois theory

to denest; for example [3] uses Galois theory to discuss the case of denesting radicals of the

form
√

3
√
a+ 3
√
b. Finally in [4], an algorithm to find the basis of radical extensions of fields

is shown. Additionally, [4] briefly discusses using Diophantine equations to denest radicals

over Q. However, all these results either are only applicable in specific cases like [1] and [2],

or use Galois theory like in [3] or [4]. The use of Galois theory implies that the fields involved

are not real anymore due to the presence of roots of unity. In this paper, we give general

results on denesting radicals without the use of Galois theory.

For a given radical expression, we can define its depth:

• The depth of any rational number is 0.

• If the depth of a radical expression r is d, then the depth of n
√
r is d+ 1.
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• If the depth of r1 is d1 and the depth of r2 is d2, then the depth of any arithmetic

combination of r1, r2 is max(d1, d2).

In other words, the depth of a radical gives the number of layers of radicals required to write it.

For example, the depth of
√

1 + 3
√

5 is 2. Thus, denesting a radical can be formally described

as decreasing the depth of a given radical.

Let an in-real field K to be a field extension of Q that is a subset of R. Note that we

can take fields like Q(t), by treating them as Q(α) where α is a real, transcendental number.

We deal with denestings involving in-real fields. Throughout the paper, fix K to be an in-real

field, unless otherwise specified. For an in-real field K, let
√
K denote the set of real numbers

b such that bm ∈ K for some integer m. In other words,
√
K consists of all real numbers of

form m
√
k with k ∈ K. Finally, for an integer n and a prime p, let vp(n) denote the largest

integer a such that pa | n. For instance, v5(325) = 2, since 325 = 52 · 13. We can extend this

definition to include rational numbers, using the rule vp(x) + vp(y) = vp(xy). For example,

v5
(
3
5

)
= −1.

The theorems in Sections 2,3, and 4 are motivated by following observation on denested

radicals: given a depth 1 radical r, if n
√
r denests as a depth 1 radical, then it is of the form

m
√
b · α where α ∈ Q(r) and b is some rational. For example,

3
√

3
√

2− 1 = 3

√
1
9
− 3

√
2
9

+ 3

√
4
9

=

3

√
1
9
· (1 − 3

√
2 + 3
√

4). All the radical identities above satisfy the observation. Section 2

deals with general theorems on extensions of fields. The theorems in Section 2 generalize

those in [2], which only deals with the particular case of p = 2, applying its theorems to the

problem of denesting square roots. Section 2 generalizes these theorems. An algorithm that

generates a basis of a field extension involving radicals is also discussed. Section 3 applies the

theorems in Section 2 to the problem of denesting radicals by proving the above observation,

using it to come up with a general method of denesting. Section 4 looks at special cases of

denesting depth 2 radicals into depth 1 radicals over Q. Section 5 discusses denesting radicals

in transcendental fields and denesting radicals with higher depths. Finally, Section 6 discusses

the matter of denesting a sum of radical expressions.
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2 Theorems on Field Extensions

The key part of the following theorems is that the fields involved are in-real, and thus do not

contain complex numbers besides ±1. The following theorems look at degrees of extensions.

Theorem 2.1. Let K be an in-real field with a ∈ K and n an integer. Then, if p
√
a 6∈ K for

all primes p that divide n, K( n
√
a) has degree n over K.

Proof. We show that Xn − a is irreducible over K. Indeed, suppose there was a smaller

irreducible factor. Since Xn − a factors as
∏n−1

i=0 (X − n
√
aζ in). Thus, any divisor of Xn − a

must have constant term of form n
√
ae · ζjn for some integers e, j, where e is the degree of

the divisor. In particular, if k is the degree of n
√
a over K, then the constant term of the

minimal polynomial of n
√
a over K is of the form

n
√
ak · ζjn. Since this quantity must be in K

and K is in-real, ζjn is either 1 or −1. Thus,
n
√
ak ∈ K. By assumption, k < n. Take some

prime p such that vp(k) < vp(n) – which must exist, since k < n. Then write k = k′ · pk and

n = n′ ·pn where nk and pn are the largest powers of p dividing k and n. Then a
k′·pk
n′·pn ∈ K. Let

p′ = pn/pk; then, taking the quantity to the n′ power, a
k′
p′ ∈ K where p′ is a power of p. But

note that gcd(k′, p′) = 1, since p′ is a power of p and k′ is relatively prime to p by assumption.

Take an x such that xk′ ≡ 1 (mod p′) which exists by Bezout; then we get a
xk′
p′ ∈ K, which

implies that a
1
p′ ∈ K. Taking the quantity to the p/p′ power, a1/p ∈ K, contradicting the

inital assumption. Thus, it follows that K( n
√
a) has degree n over K.

Theorem 2.2. Let b ∈
√
K. Then if [K(b) : K] = d, we have bd ∈ K.

Proof. Since b ∈
√
K, we have bn ∈ K for some integer n. In particular, b is the root of

f(X) = Xn − c for c ∈ K. Since [K(b) : K] = d, it follows that the minimal polynomial

of b has degree d. It must divide f , so its factors are among those of form (X − bζ in) for

i = 0, . . . , n− 1. Note that taking d such factors and multiplying means the constant term

of the minimal polynomial of b is bdζjn for some integer j. But since K is in-real, it follows

ζjn = ±1, so bd ∈ K.
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We now introduce the roots of unity filter, which will be used in this section. For a

given polynomial f(X) =
∑k

i=0 aiX
i, we can compute∑

i≡k (mod n)

aiX
i =

1

n

n−1∑
i=0

f(Xζ in) · ζ−ikn .

Indeed, note that

n−1∑
i=0

f(Xζ in) · ζ−ikn =
n−1∑
i=0

k∑
j=0

ajX
jζ i(j−k)n =

k∑
j=0

ajX
j ·

(
n−1∑
j=0

ζ i(j−k)n

)
.

Note that
∑n−1

j=0 ζ
i(j−k)
n is 0 if j 6= k (mod n) and n otherwise. Thus, the equation follows.

We use the roots of unity filter to help prove some of the following theorems.

Theorem 2.3. Let p and q be primes. Let r be a radical expression and K an in-real field

such that p
√
r ∈ K

(
q
√
d
)

with d ∈ K and q
√
d 6∈ K. Then either

• p = q, and p
√
r = p
√
dm · α with α ∈ K and m an integer or

• p 6= q, and p
√
r ∈ K.

Proof. We first introduce the following lemmas:

Lemma 2.4. If K is an in-real field and e ∈ K with p prime, then [K( p
√
e) : K] is either 1

or p.

Proof. By Theorem 2.1. with n = p, either p
√
e has degree p over K or p

√
e ∈ K.

Lemma 2.5. If d ∈ K, e ∈ K(ζp) and e ∈ K
(

p
√
d
)

, then e ∈ K.

Proof. Note that K(e) ⊂ K(ζp) and K(e) ⊂ K
(

p
√
d
)

. Thus [K(ζp) : K(e)] · [K(e) : K] =

[K(ζp) : K]. But the RHS is less than p. Thus [K(e) : K] < p. On the other hand,[
K
(

p
√
d
)

: K(e)
]
· [K(e) : K] =

[
K
(

p
√
d
)

: K
]
. The RHS is either 1 or p. If it is 1, then

[K(e) : K] = 1. If it is p, then [K(e) : K] | p. But [K(e) : K] < p, so once again

[K(e) : K] = 1, so e ∈ K.

Lemma 2.6. If p
√
r 6∈ K, then p = q.
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Proof. Because p
√
r ∈ K

(
q
√
d
)

and any element of K is in K
(

q
√
d
)

, we have K( p
√
r) ⊂ K

(
q
√
d
)

.

But then consider the chain K ⊂ K( p
√
r) ⊂ K

(
q
√
d
)

. Note that [K( p
√
r) : K] |

[
K
(

q
√
d
)

: K
]
.

By lemma 2.2, the LHS equals p, so p divides the right hand side. Note that since q is prime,

the right hand side is either 1 or q. Then clearly p = q.

Therefore, if p 6= q, then p
√
r ∈ K, proving the second statement of the theorem. From

here on, assume p = q. We return to the main part of the proof.

Case 1: p is odd. Write p
√
r = s0 + s1

p
√
d+ · · ·+ sp−1

p
√
dp−1. In other words, p

√
r = f

(
p
√
d
)

where f(X) =
∑p−1

i=0 siX
i ∈ K(X). Thus r = f

(
p
√
d
)p

. Let f(X)p =
∑p−1

i=0 X
i · fi(Xp). In

other words, X i · fi(Xp) gives the terms of f(X)p with degree i (mod p). Then

r = f0(d) +
p
√
d · f1(d) +

p
√
d2 · f2(d) + · · ·+ p

√
dp−1 · fp−1(d)

In particular, the LHS is in K and fi(d) ∈ K. Since p
√
d has degree p over K, it follows that

fi(d) = 0 for i 6= 0. That is, r = f0(d). But then note that

r = f0(d) +
p
√
dζkp · f1(d) +

p
√
dζ2kp · f2(d) + · · ·

Thus r = f
(

p
√
d · ζkp

)p
, or p

√
rζekp = f

(
p
√
d · ζkp

)
for some integer ek. Suppose sm 6= 0 for

some integer m; if all the si were zero, then obviously r = 0. Then consider the sum∑p−1
i=0 ζ

−mi
p f

(
p
√
dζ ip

)
. Because 1 + ζkp + ζ2kp + · · · equals 0 for p - k and p otherwise, it follows

that the sum equals p · sm · p
√
dm. On the other hand, this sum equals

∑p−1
i=0

p
√
rζei−mi

p = p
√
r · t

for some t ∈ K(ζp). Thus p
√
r · t = p · sm · p

√
dm, or p

√
r

dm
=
p · sm
t
∈ K(ζp). On the other

hand, r/dm ∈ K, and obviously p

√
r

dm
∈ K

(
p

√
r

dm

)
. Thus by Lemma 2.3, p

√
r

dm
∈ K; in

other words, there is some α ∈ K such that p
√
r = α · p

√
dm.

Case 2: p = 2. In this case,
√
r = s0 + s1

√
d with s0, s1 ∈ K. Now, squaring we get

r = s20 + s21d+ 2s0s1
√
d or r − s20 − s21d = 2s0s1

√
d. But note that the LHS is in K. Thus it

follows that s0s1 = 0, since
√
d 6∈ K. If s0 = 0, then

√
r = s1

√
d. If s1 = 0, then

√
r = s0. In
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both cases, the theorem is true.

We generalize Theorem 2.3 with the following two theorems:

Theorem 2.7. Let K be an in-real field such that r ∈ K. Fix a1, a2, . . . , ak ∈ K such that

none of the ai are pth powers in K. Moreover, let L be an extension K( n1
√
a1, . . . , nk

√
ak) such

that p
√
r ∈ L and [L : K] =

∏
ni. Then p

√
r = α · p

√
ae11 · · · a

ek
k for integers ei and α ∈ K.

Proof. First, we can assume that the ni are powers of p. Indeed, say q | nj and q 6= p. Let

L′ = K( n′1
√
a1, . . . , n′k

√
ak) with ni = n′i for i 6= j and n′j = nj/q. Then by Theorem 2.3,

p
√
r ∈ L′ since q 6= p. Thus we can assume the ni are powers of p.

We induct on k. The claim is obvious for k = 0. Now assume k > 0. First, suppose

nk = p. Then let L′ = K( n1
√
a1, . . . , nk−1

√
ak−1). Then note that p

√
r = p
√
amk · α with α ∈ L′

by Theorem 2.3. Now we use the inductive hypothesis on α: note α = p
√
r · a−mk ∈ L′ and

αp = r · a−mk ∈ K. Thus by the inductive hypothesis, α = α′ · p

√
ae11 · · · a

ek−1

k−1 where α′ ∈ K,

and with p
√
r = α · p

√
amk we are done.

Now, suppose nk 6= p. For simplicity, write a = ak and n = nk. Suppose p
√
r 6∈

K( n1
√
a1, . . . , n/p

√
ak). We claim this gives a contradiction. We split up on cases depending on

the parity of p.

Case 1: p is odd. Now, write L1 = K( n1
√
a1, . . . , n/p

√
a) and L2 = K( n1

√
a1, . . . , n/p2

√
a). First,

note that p
√
r = s · n

√
am with s ∈ L1 and p - m by Theorem 2.3. Write s =

∑p−1
i=0 si

n/p
√
ai with

si ∈ L2. Also, write f(X) =
∑p−1

i=0 siX
i ∈ L2[X]. Now note that r = f ( n/p

√
a)

p · n/p
√
am. Once

again, write f(X)p =
∑p−1

i=0 X
ifi(X

p); in other words, X i · fi(Xp) gives the terms of f(X)p

with degree i (mod p). Note that

r = n/p
√
am · (f0( n/p2

√
a) + f1(

n/p2
√
a) · n/p

√
a+ · · ·+ fp−1(

n/p2
√
a) · n/p

√
ap−1)

Now, write fi = fi+p for simplicity. Note that since r ∈ L2, it follows that the only nonzero fi
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can be f−m. In particular, note that

f( n/p
√
a · ζkp )p =

p−1∑
i=0

(
n/p
√
aζkp
)i · fi( n/p2

√
a) = f−m( n/p2

√
a) · n/p

√
a−m · ζ−mk

p = f( n/p
√
a)p · ζ−mk

p

Thus, for any given k, note that r = f( n/p
√
a·ζkp )p·ζmk

p · n/p
√
am. Thus p

√
r = f( n/p

√
a·ζkp )·ζdkp2 ·

n
√
am

for some integers dk such that dk ≡ mk (mod p).

Suppose sj 6= 0. Then note that
∑p−1

i=0 ζ
−ij
p f( n/p

√
a · ζ ip) = p · sj · n/p

√
aj. In particular, this

means that p · sj · n/p
√
aj =

∑p−1
k=0

p
√
r · ζ−dkp2 · ζ

−kj
p · n

√
a−m. Now write t =

∑p−1
k=0 ζ

−dk
p2 · ζ

−kj
p =∑p−1

k=0 ζ
d′k
p2 where each d′k is distinct (mod p). Then we have p · sj · n

√
apj+m = p

√
r · t for

t ∈ Q(ζp2). Now, recall that p
√
r/ n
√
am ∈ L1. Thus t

p·sj ·
n/p√

aj
∈ L1. Now, sj and

n/p
√
aj ∈ L1.

Thus t ∈ L1. Also, note that (p · sj)p · n/p2
√
aj · n/p

√
am = r · tp. Thus, we also have tp

n/p√am
∈ L2.

Also, tp
2 ∈ L2. But note that tp 6∈ L2 since n/p

√
am 6∈ L2. But t ∈ L1, so L2 ⊂ L2(t) ⊂ L1.

Since [L1 : L2] = p and t 6∈ L2, it follows [L2(t) : L2] = p. However, since tp
2 ∈ L2, it follows

t ∈
√
L2. By Theorem 2.2, it follows that tp ∈ L2, contradiction! Thus it follows that our

initial assumption gives a contradiction, and the proof is complete in the case where p is odd.

Case 2: p = 2. Define L1, L2 similarly. Note that we have
√
r = s · n

√
a where s ∈ L1

by Theorem 2.3. Now, since s ∈ L1, we have s = s0 + s1 n/2
√
a where s0, s1 ∈ L2. Thus,

√
r = (s0 +s1 n/2

√
a) n
√
a, and squaring both sides we have r = (2s0s1) n/4

√
a+(s20 +s21

n/4
√
a) n/2
√
a.

Since s0, s1, n/4
√
a, r ∈ L2 but n/2

√
a 6∈ L2 we have s20 + s21

n/4
√
a = 0. Since all the expressions

here are nonnegative, s0 = s1 = 0, meaning r = 0, contradiction. Thus the p = 2 case is

proven as well.

Theorem 2.8. Let K be an in-real field, and r, d ∈ K such that n
√
r ∈ K( m

√
d) with n

√
r

having degree n over K and m
√
d having degree m over K. Then n

√
r = α · n

√
de for α ∈ K

and e an integer.

Proof. We prove the result via induction on the number of prime divisors of n (including

multiplicities). Note that the case where n is prime is given by Theorem 2.7.

Suppose the theorem is true for all integers with fewer prime divisors than n. We prove
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it for n. First, note that since K( n
√
r) ⊆ K( m

√
d). It follows that n | m. Let p divide n.

Since p
√
r ∈ K( m

√
d), it follows p

√
r = α · p

√
de for α ∈ K and e an integer. Now note that

n
√
rd−e = n/p

√
α. Moreover, since n | m, we have n

√
d−e ∈ K( m

√
d). It follows that α ∈ K and

n/p
√
α ∈ K( m

√
d). By the inductive hypothesis, this means n/p

√
α = α′ · n/p

√
df for α′ ∈ K and

f an integer. Thus n
√
rd−e = α′ · n/p

√
df . In other words, n

√
r = α′ · n

√
de+pf , and thus the

inductive step is complete.

Define an extension L = K( n1
√
a1, . . . , nk

√
ak) to be simple if ai ∈ K and [L : K] =

∏
ni.

We show that any extension L = K( n1
√
a1, . . . , nk

√
ak) can be made simple with the following

theorem:

Theorem 2.9. Let K be an in-real field and a1, . . . , ak ∈ K, and n1, . . . , nk integers. If

L = K( n1
√
a1, . . . , nk

√
ak) and [L : K] 6=

∏
ni, then there exist n′i and a′i such that L =

K( n′1
√
a′1, . . . ,

n′j
√
a′j) and

∏
n′i = [L : K].

Proof. We start with a lemma:

Lemma 2.10. If K is an in-real field and a ∈ K, and n =
∏
qi where qi are prime powers,

each pairwise relatively prime, then K( n
√
a) = K( q1

√
a, . . . , qk

√
a).

Proof. We show that qi
√
a ∈ K( n

√
a), which shows that K( q1

√
a, . . . , qk

√
a) ⊂ K( n

√
a). But note

that n
√
a ∈ K( n

√
a). Taking the expression to the n/qi power, qi

√
a ∈ K( n

√
a).

Next, we show that n
√
a ∈ K( q1

√
a, . . . , qk

√
a). But this follows by Bezout on a1/qi . Thus,

K( n
√
a) ⊂ K( q1

√
a, . . . , qk

√
a). Taking both inclusions proves the lemma.

Thus, we can assume all the ni are prime powers by the separation into prime powers by

Lemma 2.10.

We first consider the case where the ni are prime powers of the same prime p. First, order

the ni
√
ai in decreasing order of ni, so that n1 ≥ n2 ≥ . . . ≥ nk. Next, consider the chain of
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extensions

K ⊂ K( p
√
a1) ⊂ · · · ⊂ K( n1

√
a1) ⊂ K( n1

√
a1, p
√
a2) ⊂ · · · ⊂ K( n1

√
a1, n2
√
a2) ⊂ · · · ⊂ K( n1

√
a1, . . . , nk

√
ak)

Consider the first step the extension is not proper. This must be at a point where p
√
aj+1 ∈

K( n1
√
a1, . . . , nj

√
aj). Indeed, if pe+1√aj+1 ∈ K( n1

√
a1, . . . , nj

√
aj, pe
√
aj+1), then by taking L =

K( n1
√
a1, . . . , nj

√
aj) we get pe+1√aj+1 ∈ L( pe

√
aj+1). By Theorem 2.1, this means p

√
aj ∈ L =

K( n1
√
a1, . . . , nj

√
aj). In this case, p

√
aj+1 = α · p

√
ae11 · · · a

ej
j for α ∈ K and integers ei by

Theorem 2.7. Now, we claim that K( n1
√
a1, . . . , nj

√
aj, nj+1/p

√
α) = K( n1

√
a1, . . . , nj+1

√
aj+1).

Indeed, nj+1/p
√
α = nj+1

√
aj+1

a
e1
1 ···a

ej
j

. Because of the ordering of ni, we have nj+1

√
ae11 · · · a

ej
j ∈

K( n1
√
a1, · · · , nj

√
aj). Note that this replacement decreases

∏
ni. Repeating this procedure,

we eventually get [L : K] =
∏
ni in the case when all the ni are powers of the same prime p.

Now, in the general case, we once again assume all the ni are prime powers by Lemma 2.8.

We generate the chain of extensions as follows:

• Let the prime divisors of [L : K] be p1 through pk

• Let K = K0

• Define Ki+1 as Ki adjoin all the radicals n
√
a such that n is a prime power of pi+1 for

i = 0, . . . , k − 1.

• L = Kk.

Now, by applying the procedure for prime powers on each Ki with respect to Ki−1, inductively,

the theorem holds. Note that the a′i are still roots of combinations of products of the ai; we

will use this in the proof of Theorem 3.1.

We end the section with a theorem that generalizes Theorem 2.8:

Theorem 2.11. Let K be an in-real field and L = K( n1
√
a1, . . . , nk

√
ak) with [L : K] =

∏
ni.

If b ∈
√
K and b ∈ L, then b = α ·

∏
ni

√
aeii for some choice of integers ei and α ∈ K.

Proof. We induct on k. Note that the case k = 1 is given by Theorem 2.8.

Suppose the theorem is true for all values less than k. We prove it for k. Write bi = ni
√
ai ∈

√
K. Taking K ′ = K(b1, . . . , bk−1), we have b ∈ L and b ∈

√
K ′; Thus b = α · bekk for α ∈ K ′

9



and ek an integer. However, note that
√
K is closed under multiplication. Since b, bekk ∈

√
K,

it follows α ∈
√
K. Moreover, α ∈ K ′. By the inductive hypothesis on α,K,K ′, it follows

α = α′ ·
∏k−1

i=1 b
ei
i where α′ ∈ K. Then we have b = α′ ·

∏
beii , completing the induction.

We now present an algorithm that computes the basis of Q(r) over Q where r is a depth

one radical r =
∑

ni
√
ai. First, assume that the ai are integers; we can do this by multiplying

by a suitable constant We can define a radical to be an ordered pair (n, a) representing n
√
a

where n, a are integers with n ≥ 2. We can also define a power-radical to be one of the

form pk
√
a where p is a prime and k, a are integers. We represent such a value through the

triple (p, k, a). We can represent a radical extension K of Q through a vector consisting of

power-radicals by Lemma 2.10.

Given a vector of power-radicals, we sort it according to the following rules:

• (p1, k1, a1) comes before (p2, k2, a2) if p1 > p2.

• If p1 = p2, then (p1, k1, a1) comes before (p2, k2, a2) if k1 > k2.

• If p1 = p2 and k1 = k2 then (p1, k1, a1) comes before (p2, k2, a2) if a1 > a2.

This sections off the vector into radicals with the same prime power. Then we can find

the simple basis involving solely the prime powers of the same prime as in the beginning

of the proof of Theorem 2.9. Namely, take all the ordered triples (pi, ki, ai) with pi = p,

and let this set be S. Among the triples in S, take the set of prime factors of the ai’s,

and let this set be A = {p1, p2, . . . , pn}. Then note that each ai can be written in the form

ai =
∏

pj∈A p
ei,j
j . We have a set of vectors vi = (ei,1, . . . , ei,n). To find the basis, note that

we need to ensure that all the vi are linearly independent (mod p). If not, suppose WLOG

b1v1 + . . .+ bm−1vm−1 + vm = 0 (by multiplying by a suitable constant, we can assume that

the coefficent of vm is one). Then replace am with
p

√
a
b1
1 ···a

bm−1
m−1

am
and km with km− 1. If km = 0

after this, then simply discard the mth ordered triple from S. Now repeat the process until

all the vi are linearly independent. This finishes the algorithm described by Theorem 2.9, and

repeating for all the other primes gives us Q(r) as a simple extension over Q. In particular,

10



note that if Q(r) = Q( n1
√
a1, . . . , nk

√
ak) and [Q(r) : Q] =

∏
ni, we have the basis equal to the

set of all numbers of form
∏

ni

√
aeii where ei ranges from 0 to ni − 1.

3 Applications to Denesting

We can apply the above theorems to deduce the following

Theorem 3.1. Let r be a depth 1 radical over K, an in-real field. Then, if n
√
r denests as a

depth 1 radical in K, it takes the form b · α where b ∈
√
K and α ∈ K(r).

Proof. We induct on the number of prime factors of n. If n = 1, the theorem obviously holds.

Now we prove the inductive step.

Let p be a prime divisor of n. Clearly, p
√
r must denest. Let K( p

√
r) = L. Since p

√
r denests

as a depth 1 radical in K, it follows that L = K(r, n1
√
a1, . . . , nk

√
ak) such that ai ∈ K. Now,

choose a′i and n′i as in Theorem 2.9 such that [L : K(r)] =
∏
n′i and L = K(r, n′1

√
a′1, . . . ,

n′j
√
a′j);

note that the a′i are still roots of products of ai (by the discussion at the end of Theorem 2.9),

and thus the a′i are in
√
K. It follows that by Theorem 2.11 that p

√
r =

∏
n′i
√
a′eii · α with

α ∈ K(r). In other words, p
√
r = b · α with α ∈ K(r) and b ∈

√
K.

Now we use the inductive step: note α ∈ K(r), and is therefore a depth 1 radical. Now,

since n
√
r = n/p

√
b · α denests, it follows n/p

√
α denests. Thus, it equals b′ ·α′ with b′ ∈

√
K and

α′ ∈ K(α) ⊂ K(r). Therefore, n
√
r = n/p

√
b · b′ · α′, which proves the theorem.

As an example,
3
√

3
√

2− 1 = 1
3√9 · (1−

3
√

2 + 3
√

4) and
√

4
√

3− 6 = 4
√

3 · (
√

3− 1). Now,

given r, b, α as above with n
√
r = b · α with b ∈

√
K and α ∈ K(r), we show a theorem that

describes the possible values of b.

Theorem 3.2. Let r be a depth 1 radical over K such that n
√
r denests as a depth 1 radical

over K. Write r = b1 + b2 + · · ·+ bk where bi ∈
√
K for all i. Then if n

√
r denests in the form

b · α with α ∈ K(r) and b ∈
√
K, then bn = c ·

∏
beii for some c ∈ K and integers ei.

11



Proof. First, note that r = bn · αn. Thus, bn ∈ K(r). We also have bn ∈
√
K. Write d = bn.

We wish to prove that if d ∈
√
K and d ∈ K(b1, . . . , bk), then d = c ·

∏
beii for some integers

ei and c ∈ K.

Now, with the aid of Theorem 2.7, we can find b′i ∈
√
K such that K(r) = K(b′1, . . . , b

′
k)

and [K(r) : K] =
∏

[K(b′i) : K]. Now, d ∈ K(b′1, . . . , b
′
k). But now the required statement

is precisely Theorem 2.11, after noting that the b′i’s can be written as a product of bi’s and

elements of K.

This gives us a general algorithm that will always denest a radical n
√
r, where r has

depth 1 over K. Moreover, suppose K(r) = K( n1
√
a1, . . . , nk

√
ak) such that ai ∈ K and

[K(r) : K] =
∏
ni, guaranteed by Theorem 2.9. Then a basis of K(r) over K is S where S

consists of all products of form
∏k

i=1
ni

√
aeii where ei ranges from 0 to ni − 1. Let this basis

be {1, b1, . . . , bM} where M =
∏
ni − 1. Then if n

√
r denests, we have

r = c · b · (x0 + x1 · b1 + . . .+ xM · bM)n

for some b ∈ S and c ∈ K. But note that we can replace xi with xi/x0 and c with c · xn0

to WLOG that x0 = 1. To optimize further, we only have to consider b =
∏k

i=1
ni

√
aeii

where ei ranges from 0 to gcd(ni, n)− 1. Indeed, write d = gcd(ni, n). Then take A,B with

An+Bni = d. Then

b·bdi (1+x1·b1+· · ·+xM ·bM)n = b·bAn+Bni
i (1+x1·b1+· · ·+xM ·bM)n = (bni

i )B·b·[bAi (1+x1·b1+· · ·+xM ·bM)]n

Thus any denesting with b =
∏k

i=1
ni

√
aeii is equivalent to one where ei = ei + gcd(ni, n).

Now, for each of the possible b’s, we have

r = c · [b · (1 + x1 · b1 + . . .+ xM · bM)n] = c · [f0 + f1 · b1 + . . .+ fM · bM ]

where f0, . . . , fM are polynomials in x1, . . . , xM . If we write r = r0 +r1 ·b1 + . . .+rM ·bM , then

we have M polynomial equations, each of the form ri · f0(x1, . . . , xM )− r0 · fi(x1 . . . , xM ) = 0

for i = 1, . . . ,M . We then have a system of M polynomials in M variables that we need to

solve over K. If K = Q, then we can use the Rational Root Theorem to quickly solve this.

For example, to denest
3
√

3
√

2− 1 as a depth 1 radical in the rationals, one would consider
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the three possible equations

• 3
√

2− 1 = c · (1 + x1
3
√

2 + x2
3
√

4)3

• 3
√

2− 1 = c · 3
√

2 · (1 + x1
3
√

2 + x2
3
√

4)3

• 3
√

2− 1 = c · 3
√

4 · (1 + x1
3
√

2 + x2
3
√

4)3

Here, b ∈ {1, 3
√

2, 3
√

4} and b1 = 3
√

2, b2 = 3
√

4. To solve this system, one would expand the right

hand sides and equate corresponding terms – since c and the xi are rational, the constant, 3
√

2,

and 3
√

4 terms must equal. If any of these has a solution (c, x1, x2) in rationals, then
3
√

3
√

2− 1

denests. Indeed, note that 3
√

2− 1 = 1
9
(1− 3

√
2 + 3
√

4)3, and thus
3
√

3
√

2− 1 = 1− 3√2+ 3√4
3√9 .

4 Cases of Denesting

In this section, we explore certain cases of denesting using Theorem 3.2.

Theorem 4.1. Let r be a depth 1 radical over K, and n an integer. Let N : K(r)→ K denote

the norm of an element x of K(r) with respect to K. Moreover, let K(r) = K( n1
√
a1, . . . , nk

√
ak)

be a simple extension of K. Let B be the set of numbers of form
∏

ni

√
aeii where each

0 ≤ ei < gcd(ni, n). Finally, let g = gcd(n, [K(r) : K]). Then if N(r/b) is not a perfect gth

power in K for some b ∈ B, then n
√
r does not denest.

Proof. We show the contrapositive: that if n
√
r denests, then N(r/b) must be a perfect gth

power for some b ∈ B. Since n
√
r denests, we have r = c·b·αn where α ∈ K(r) and b ∈ B, c ∈ K.

Taking the norm, N(r) = N(b) · N(c) · N(αn). Now, since c ∈ K, N(c) = c[K(r):K]. Thus,

N(r/b) = c[K(r):K] ·N(α)n. Since N maps to K, it follows that N(r/b) is a perfect gth power

in K, as desired.

While this theorem is useless in cases where [K(r) : K] and n are relatively prime, such as

the problem of denesting
√

3
√
a+ 3
√
b, it still reduces the cases of denesting certain radicals.

For example, n
√

n
√
r − 1 will not denest for n odd and r ∈ Q if rk · (r − 1) is not a perfect

nth power in Q for any integer k. Note that the converse is not true in general: the norm
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of 3
√

9 − 1 in Q( 3
√

3) with respect to Q is 8 and 3
√

8 = 2 ∈ Q, but it can be checked that

3
√

3
√

9− 1 fails to denest.

We now recount a theorem proven in [2] that follows from Theorem 4.1:

Theorem 4.2. If K is an in-real field with a, b, r ∈ K and
√
r 6∈ K and

√
a+ b

√
r denests

in K, then either
√
a2 − b2r ∈ K or

√
−r(a2 − b2r) ∈ K. (Borodin, et. al)

Proof. Let N be the norm of an element x of K(
√
r) with respect to K. Then it follows that

either N(a + b
√
r) or N((a + b

√
r)/
√
r) is a perfect square in K. The former is equal to

a2 − b2r, and the latter is equal to −1/r(a2 − b2r), which is a perfect square if and only if

−r(a2 − b2r) is a square, as desired.

In fact, the converse of Theorem 4.2 holds. Suppose
√
a2 − b2r = c ∈ K. Then we

actually have
√
a+ b

√
r =

√
a+c
2

+
√

a−c
2

. If
√
−r(a2 − b2r) = c ∈ K, then we have√

a+ b
√
r = 1

4√r

(√
br+c
2

+
√

br−c
2

)
.

Next, we discuss the denesting of
√
| 3
√
r + 1| and recount a theorem proven in [3].

Theorem 4.3. For r ∈ Q,
√
| 3
√
r + 1| denests if and only if t4r + 4t3r + 8t − 4 = 0 has a

rational solution t. (Sury)

Proof. If the radical denests, then note that | 3
√
r + 1| = c · 3

√
rk · (1 + x 3

√
r + y

3
√
r2)2 for

some integer k and c, x, y ∈ Q. But we can assume k = 0 by the discussion following

Theorem 3.2. Then | 3
√
r + 1| = c · (1 + x 3

√
r + y

3
√
r2)2. Expanding, we have | 3

√
r + 1| =

c·[(1+2xyr)+ 3
√
r(y2r+2x)+

3
√
r2(x2+2y)]. It follows that x2+2y = 0 and 1+2xyr = y2r+2x.

Substituting y = −x2

2
, we have 1− x3r = x4r

4
+ 2x, or x4r + 4x3r + 8x− 4 = 0, which must

have a rational solution.

Once again, solving the polynomial is simplified by the fact that the solutions need to be

rational. Note that the general case of denesting
√

3
√
a+ 3
√
b is also solved by writing it as

6
√
b ·
(√

1 + 3
√
b/a

)
and denesting

√
1 + 3

√
b/a.
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Next, we give an algorithm that describes how to denest n
√√

r ± 1 for a given rational r.

We first take care of the case when r is odd:

Theorem 4.4. Let r = r1/r2 ∈ Q where gcd(r1, r2) = 1. If
√
r ± 1 = a(1 + x

√
r)n with

a, x ∈ Q, and x = x1/x2 with gcd(x1, x2) = 1, then x1 | rbn/2c2 and x2 | rbn/2c1 .

Proof. Since
√
r±1 = a(1+x

√
r)n, it follows that 1+x2r

(
n
2

)
+x4r2

(
n
4

)
+. . . = ±

(
x
(
n
1

)
+ x3r

(
n
3

)
+ . . .

)
.

Multiplying the polynomial equation by r
bn/2c
2 , we get an integer polynomial equation that x

satisfies with constant term r
bn/2c
2 and lead term r

bn/2c
1 xn. Thus by the rational root theorem,

we are done.

Now, if n
√√

r ± 1 denests when r is odd, then
√
r ± 1 = c ·

√
rk · (1 + x

√
r)n. But since

gcd(n, 2) = 1, we can assume k = 0. Thus we can denest n
√√

r ± 1 as follows:

• Make a list of all rationals s = s1/s2 where s1 | rbn/2c2 and s2 | rbn/2c1 .

• For each rational s in the list, compute (1 + s
√
r)n. If the value is of the form a± a

√
r,

then (1 + s
√
r)n = a(1±

√
r), and so n

√
1±
√
r denests as 1+s

√
r

n√a .

• If no such s exists, then n
√√

r ± 1 has no denesting.

In the general case of denesting n
√
|
√
r ± 1|, we can take n′ to be the largest odd divisor of

n with n = n′ · e where e is a power of two. Then, given n′
√
|
√
r ± 1| denests as n

√
a(1 + x

√
r),

we need to denest e
√
|1 + x

√
r| = e

√
|1±
√
rx2|. But we can denest this using Theorem 4.2

repeatedly.

5 Extensions to Other Fields

We extend the previous results to other fields. Note the only requirement of K in Theorem

3.2 is that it is a real extension of Q. While it is easiest to denest over Q because of the

rational root theorem, in theory a denesting can be done over any in-real field K.

One such field we can extend the results of Theorem 3.2. is the field of depth d radicals.

As such, we define the set Q(d) to be the set of all depth-d radicals over Q. Note that Q(0) = Q.

Section 4, therefore, deals with denesting roots of radicals in Q(1).
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We prove the following:

Theorem 5.1. Q(d) is a field.

Proof. The only difficulty is that multiplicative inverses exist; note that all other properties

are satisfied. Take r ∈ Q(d). Consider the inclusion Q(r) ⊂ Q(d). Now, since 1/r ∈ Q(r), we

have 1/r ∈ Q(d). All other requirements for a field are met by the definition of depth.

Now, taking K = Q(d) in Theorem 3.2 shows how to denest in general. The difficulty is

that the general method for denesting in Section 4 is more difficult since the Rational Root

Theorem cannot be applied.

Other fields we can extend the results of the previous sections to are transcendental

extensions of Q. Consider the field Q(X). While Q(X) is not in-real, it is isomorphic

to Q(t) where t is a real, transcendental number. Since t is transcendental, any radical

relationship involving t must be true replacing t with a variable X. In fact, in the same way,

we can extend the results to any field Q(X1, X2, . . . , Xn), by replacing the Xi with suitable

real, independent transcendental numbers. An example of a radical expression in Q(X) is

the following:
√

2X + 2
√
X2 − 1 =

√
X − 1 +

√
X + 1. Note that Theorem 3.1 holds, as

√
X − 1 +

√
X + 1 =

√
X − 1

(
1 +

√
X2−1
X−1

)
which satisfies the form b · α with b ∈

√
Q(X)

and α ∈ Q(X,
√
X2 − 1).

6 Sums of Nested Radicals

In this section, we explore sums of nested radicals.

We start with a theorem:

Theorem 6.1. Let r1, r2, . . . , rm ∈ K be distinct such that ni
√
ri has degree ni over K for all

i. Moreover, suppose that n1
√
r1 + n2

√
r2 + . . .+ nm

√
rm = s ∈ K. Then s = 0. (Here, we can

take ni
√
ri to be possibly negative, but real).
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Proof. We prove the result by induction on m. First, suppose m = 2. Then n1
√
r1 + n2

√
r2 =

s ∈ K. It follows that n1
√
r1 = s− n2

√
r2 ∈ K( n2

√
r2). By Theorem 2.11, it follows that n1

√
r1 =

α · n2
√
re2 for some α ∈ K and e an integer. Take e (mod n2). Note that n2

√
r2 + α · n2

√
re2 = s.

Either s = 0, or n2
√
r2 is the root of f(X) = X + α ·Xe − s ∈ K[X]. But in the latter case, it

follows that [K( n2
√
r2) : K] < n2, contradiction! Thus the result holds for m = 2.

Now we use strong induction. Suppose the result holds for 2 through m − 1 variables.

We prove it for m variables. First, take the subset of {1, 2, . . . ,m − 1} such that ni
√
ri 6∈

K( nm
√
rm); WLOG this subset is {1, 2, . . . , j} (note that this subset is possibly empty). Then

n1
√
r1 + . . .+ nj

√
rj = s− nj+1

√
rj+1 − . . .− nm

√
rm ∈ K( nm

√
rm).

• If j = 1, then n1
√
r1 ∈ K( nm

√
rm), contradiction.

• If j = 0, then ni
√
ri ∈ K( nm

√
rm) for all i < m. By Theorem 2.11, it follows that

ni
√
ri = αi · nm

√
reim for αi, ei. Reduce ei (mod nm) and note that α1

nm
√
re1m + · · · +

αm−1
nm
√
r
em−1
m + nm

√
rm = s. Either s = 0, or nm

√
rm is a root of the polynomial

f(X) = α1X
e1+. . .+αm−1X

em−1+X−s. But the latter case gives a degree contradiction,

so s = 0.

• If j > 1, then take K ′ = K( nm
√
rm) and s′ = s− nj+1

√
rj+1−. . .− nm

√
rm. Then n1

√
r1+. . .+

nj
√
rj = s′ ∈ K ′. If necessary, replace ni

√
ri with n′i

√
r′i such that [K ′( ni

√
ri) : K] = n′i. By

the inductive hypothesis, it follows s′ = 0, so nj+1
√
rj+1+. . .+ nm

√
rm = s. Now, recall that

ni
√
ri ∈ K ′ for i > j. Thus ni

√
ri = αi · nm

√
reim for αi ∈ K and ei integers. Then it follows

that either s = 0 or nm
√
rm is a root of f(X) = αj+1X

ej+1 + . . .+ αm−1X
em−1 +X − s.

The latter case gives a degree contradiction, and thus s = 0 as desired.

This completes the induction, and thus we are done.

In particular, this proves that:

Theorem 6.2. Let b1, b2, . . . , bm be depth d radicals such that ni
√
bi fails to denest as a depth

d radical for i = 1, . . . ,m. If n1
√
b1 + n2

√
b2 + . . . + nm

√
bm denests as a depth d radical (or
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lower depth), then n1
√
b1 + n2

√
b2 + . . .+ nm

√
bm = 0.

Proof. Take K = Q(d) in Theorem 6.1. If necessary, replace ni
√
bi with n′i

√
b′i such that n′i < ni

and b′i ∈ Q(d), guaranteed by Theorem 2.6.

The consequence of Theorem 6.2 is that denesting a general radical expression reduces to

denesting individual radicals or showing that the expression is actually 0. As an example,

note that √
1 +
√

3 +

√
3 + 3

√
3−

√
10 + 6

√
3 = 0

and that none of
√

1 +
√

3,
√

3 + 3
√

3,
√

10 + 6
√

3 denest on their own. As another example,

3

√√
5 + 2− 3

√√
5− 2 = 1

However,
3
√√

5 + 2 actually denests as 1
2
(1 +

√
5).

7 Conclusion and Future Work

The paper derives a general result for when nested radicals of depth 2 denest in in-real fields,

proven as a culmination of the theorems in Sections 2 and 3. This is extended to radicals of

general depth over Q and also transcendental fields like Q(t). Additionally, an algorithm that

makes a radical extension of Q simple is also given. Specific cases of denesting radicals are

examined, including those that denest n
√
|
√
r + 1| and those that determine when a radical

cannot be denested using norms over fields. Finally, we show that a sum of radicals that do

not denest on their own either does not denest or equals 0.

The main difficulty encountered was that of computation. Denesting a general radical

involves an extraordinary amount of computation - for example, figuring out if
3
√

3
√

2− 1

denests involves finding the appropriate degree 9 polynomial. For radicals with higher degrees,

the computations involved become much greater. While an algorithm was given that can

denest a radical in general, the algorithm is ineffective. One direction of research may be

finding a way to optimize the algorithm, for example with the Rational Root Theorem.
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