
The PRIMES 2016 Math Problem Set

Dear PRIMES applicant!

This is the PRIMES 2016 Math Problem Set. Please send us your
solutions as part of your PRIMES application by December 1, 2015.
For complete rules, see http://web.mit.edu/primes/apply.shtml

Note that this set contains two parts: “General Math problems” and
“Advanced Math.” Please solve as many problems as you can in both
parts.

You can type the solutions or write them up by hand and then scan
them. Please attach your solutions to the application as a PDF file.
The name of the attached file must start with your last name, for
example, “smith-solutions.” Include your full name in the heading of
the file.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that posting these problems on problem-solving web-
sites before the application deadline is strictly forbidden! Ap-
plicants who do so will be disqualified, and their parents and recom-
menders will be notified.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day. Instead, think about them, on
and off, over some time, perhaps several days. We encourage you to
apply if you can solve at least 50% of the problems.

We note, however, that there will be many factors in the admission
decision besides your solutions of these problems.

Enjoy!
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General math problems
Problem G1. Let N be a positive integer. A soon to be bankrupt

casino lets you play the game G(N). In the game G(N), you roll a
typical, fair, six-sided die, with faces labeled 1 through 6, up to N
times consecutively. After each roll, you may either end the game and
be paid the square of the most recent number you rolled, or roll the
die again hoping for a better number — on the N -th roll you must
take the money and cannot roll again. For example, in the game G(2)
you might first roll a 5, but, hoping for a 6, you roll again, only to be
disappointed to roll a 1 on your second and final roll, and you walk
away with $1.

(a) Describe a strategy that maximizes the expected value of playing
G(N).

(b) What is this maximal expected value?
Solution. Let EN be the expected gain in G(N) under the optimal

strategy. E.g., E1 = 12+22+32+42+52+62

6
= 91

6
. Now, consider N > 1.

Suppose the result of the first roll is p. If the player decides to stop, his
gain is p2. Otherwise, he plays the game G(N − 1) and has expected
gain EN−1. Thus, if p2 ≤ EN−1, he should keep rolling, otherwise he
should stop. So we get a recursion

EN =
[E

1/2
N−1]

6
EN−1 +

1

6

6∑
p=[E

1/2
N−1]+1

p2.

In particular, we have E2 = 245
12

, E3 = 214
9

, E4 = 1405
54

. Starting from
E4, the recursion is

EN =
5

6
EN−1 + 6,

which means EN = 36−a
(
5
6

)N−4
. Plugging in N = 4, we get 36−a =

1405
54

, which gives a = 539
54

.
Problem G2. (a) Let n be an even positive integer. Can one divide

the numbers 1, ..., n into three nonempty groups, so that the sum of
numbers in the first group is divisible by n + 1, in the second one by
n+ 2, and in the third one by n+ 3?

(b) For which odd positive integer n can one do this?
Solution. (a) No. Let the sum of the first group be (n+ 1)a, in the

second (n + 2)b, in the third (n + 3)c. The total is n(n + 1)/2, which
is 2 + n

2
modulo n + 2. So we get that c − a is 2 + n

2
modulo n + 2.

On the other hand, we see that a < n
2

and c < n
2
, hence |c − a| < n

2
.

But the numbers with smallest absolute value which are 2 + n
2

modulo
n+ 2 are 2 + n

2
and −n

2
, which gives a contradiction.
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(b) For odd n ≥ 9. If n− 1 is divisible by 4, the a, b, c defined above
can be taken to be a = n−5

4
, b = 1, c = n−1

4
. If n− 3 is divisible by 4,

then a, b, c can be taken to be a = n−7
4

, b = 1, c = n−3
4

. For n ≤ 7, it
is easy to see by inspection that the division into 3 groups as required
is not possible.

Problem G3. Suppose you play a game whose goal is to collect
three cards of the same suit. In your first move, you take three cards
from a standard 52-card deck at random. Call them C1, C2, C3.

1. If C1, C2, C3 are all of the same suit, you win.
2. If C1, C2, C3 are all of different suits, you put them back, shuffle,

and take three cards one more time. If now all are of the same suit,
you win, otherwise, you lose.

3. If among C1, C2, C3, exactly two cards are of the same suit,
you put the third card (the odd one out) back into the deck, shuffle,
and pull out a card. If it is the same suit as the other two, you win,
otherwise, you lose.

What is the chance of winning? (Write the answer as a fraction in
lowest terms).

Solution. The probability to win at the first move is p1 = 12·11
51·50 =

22
425

. The probability to get all three of different suits is p2 = 39·26
51·50 = 169

425
.

In this case, the probability of winning is p2p1 = 3718
180625

. Finally, the

probability of two of the same suit is p3 = 234
425

, and then the probability

of the third card being of the same suit is p4 = 11
50

, so the probability of

winning is p3p4 = 1287
10625

. Altogether we get p = p1+p2p1+p3p4 = 34947
180625

.
Problem G4.
In a couples therapy session, n couples are to be seated at a round

table (in 2n chairs), but no person is allowed to sit next to his/her
spouse. How many seat assignments are there? What is the number of
seatings for 5 couples?

Solution. Pick k out of the n couples. Then the number of seatings
so that these k couples sit together is computed as follows: there are
2n ways to seat the first couple (up to order), and then the number of
seatings of the rest of the k couples equals (2n− k− 1)...(2n− 2k+ 1).
So the total is

Nk = 2k · 2n · (2n− k − 1)!

Thus, using the inclusion and exclusion formula, we get that the answer
is

N =
∑
k≥0

(−1)k
(
n

k

)
Nk
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For 5 couples we get

10 · (9!− 5 · 2 · 8! + 10 · 4 · 7!− 10 · 8 · 6! + 5 · 16 · 5!− 32 · 4!) = 1, 125, 120.

Problem G5. A zero-one matrix A is said to contain another zero-
one matrix P if some submatrix1 of A can be transformed to P by
changing some ones to zeroes. Otherwise A is said to avoid P .

Consider the following pattern avoidance game, denoted by PAG(n, P ):
Starting with the n×n all zeroes matrix, two players take turns chang-
ing zeroes to ones. If any player’s turn causes the matrix to contain
the pattern P , then that player loses.

If no dimension of P exceeds n, then PAG(n, P ) will always have a
winner. Define W (n, P ) to be the winner of PAG(n, P ) if both players
employ optimal strategies.

(a) Determine W (n, P ) for every n ≥ k when P is a k by 1 matrix
with every entry equal to 1.

(b) Determine W (n, P ) for every n ≥ 2 when P is a 2 by 2 identity

matrix: P =

(
1 0
0 1

)
Solution:
(a) If P is a k × 1 matrix with all ones, then W (n, P ) = 2 if n ≥ k

and n(k − 1) is even, but W (n, P ) = 1 if n ≥ k and n(k − 1) is odd.
Proof: Regardless of where anyone plays their turn, no player can

add the kth one to any row. If there are any rows with fewer than k
ones, then the current player can take a turn. Otherwise they will have
to add the kth one to some row. Therefore if n ≥ k, then the first
player wins if n(k− 1) is odd, but the second player wins if n(k− 1) is
even.

(b) W (n, P ) = 1
Proof: The first player should play in the top left corner. After this,

both players can only play in the first column or first row. There are
only 2n − 1 entries in this column and row, so the second player will
have to play somewhere that forms the forbidden matrix P .
Problem G6. Suppose that n pine trees grow at points T1, ..., Tn

of the plane (no three on the same line). A cyclic order C of T1, ..., Tn
(i.e., an order up to cyclic permutation) is called visible if there exists a
point P in the plane from which an observer sees the trees T1, ..., Tn in
the order C. Show that if n ≥ 7 then there exists a cyclic order which
is not visible. What about n = 6?

Solution. It suffices to solve the problem for n = 7. The orders
change at lines connecting the points. There are n(n− 1)/2 = 21 such

1A submatrix is obtained from a matrix by crossing out some rows and some
columns.
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lines, so the number of parts into which they subdivide the plane is at
most 1+21 ·22/2 = 232. At the same time, the number of cyclic orders
is 6! = 720. Since 720 > 232, there exists a cyclic order which is not
visible.

For n = 6 the number of cyclic orders is 120 and the number of
regions is 121, so the argument needs to be imporved. To do so, note
that we can erase the intervals of the lines which are between the points,
since when P crosses the line TiTj between Ti and Tj, the order of Ti
and Tj does not change. When we do so, the number of regions goes
below 120, and the same argument applies.

Problem G7. A permutation s of n elements has order 2016 (i.e.,
the smallest number of times you need to repeat s to get to the original
position is 2016). What is the smallest possible value of n? Give
an example of such s for the minimal n. (Hint: consider the cycle
decomposition of s).

Solution. n = 48. We have 2016 = 25 · 32 · 7. The order of a
permutation is the least common multiple of orders of its cycles. So
there is a cycle of order divisible by 32, a cycle of order divisible by 9,
and a cycle of order divisible by 7. If these are different cycles, then
n ≥ 32 + 9 + 7 = 48. Otherwise, it will have to be even larger. But for
n = 48 we can take three cycles of lengths 32, 9, and 7.
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Advanced math problems
Problem M1. There are n piles with coins. In one move you can

pick several piles and take the same number of coins from those piles.
Given a set of piles, its piles number is the smallest number of moves
you need to remove all coins from all the piles. For example, if you have
three piles with 1, 2, and 3 coins each, you can remove all the coins in
three moves by treating one pile at a time. But the piles number is 2,
as the smallest number of moves is 2.

Find the piles number (with proof) for the following sets of piles:

• 1, 2, 3, 10, 20, 30, 100, 200, 300.
• 1, 2, 3, 11, 12, 13, 101, 102, 103.
• 1, 3, 4, 7, 11, 18, 29, 47, 76, 123.
• Any sequence of natural numbers of length n where each term

starting from the third one is the sum of two previous terms.

Solution. First observation: we can do our moves in any order.
Second observation: It is obvious that three piles in an arithmetic

progression a, 2a, and 3a can be removed in two moves. The first
move removes a coins from the first and the last pile. The second move
removes 2a coins from the second and the last pile. Also any three piles
that are different can’t be removed in one move.

Third observation. Suppose our piles are in the increasing order. If
k-th pile has more coins than all the first i piles, where k > i, then
there exists a move that includes the k-th pile, without including the
first j piles. Indeed, as we can do our moves in any order, we can start
with moves that included any of the first j piles. The sum of amounts
removed in all of those moves is not more than the total of the coins
in the first j piles. That means the k-th pile is still not empty and we
need one more move.

Fourth observation. When we have two piles with the same number
of coins we can treat them the same way. That means we can ignore
all the piles with repeated number of coins.

1. We need two moves to process the first three piles 1, 2, 3, two more
moves to process the next three piles 10, 20, 30, and two more moves
to process the last three piles 100, 200, 300. Now we need to prove that
we can’t do better. Suppose we do the moves that include any of the
first three piles first. We need at least two moves to empty them. If
we sum up the number of coins removed from one pile in these moves,
the total is not more than 6. That means after these moves, the next
three piles can’t be the same or empty. That means we need at least
two more moves that included one of the next three piles. Similarly, we
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need at least two more moves to finish the last three piles. The piles
number is 6.

2. In the first move we remove 1 coin from piles indexed 1, 3, 4, 6, 7,
9. We are left with 0, 2, 2, 10, 12, 12, 100, 102, 102. In the next move
we remove two coins from piles indexed 2, 3, 5, 6, 8, 9. We are left
with 0, 0, 0, 10, 10, 10, 100, 100, 100. There are two different numbers.
We can finish this in two more moves. To prove that this number is
optimal, we observe that we need at least two moves that include one
of the first three piles. By the third observation there exists a move
that includes pile 4 and doesn’t include the first three pile. That means
we need one more move. Using the third observation again for pile 7,
we need one more move. The piles number is 4.

4. Suppose the first two piles are the same. Then we can process the
first pile the same way as the second pile. This means we can ignore
the first pile, and assume that our sequence is of length n− 1 with the
first two piles that are different.

Suppose the first two piles are different. Denote the piles sequence
ai. On the first move we remove an−1 cookies from the last two piles.
The second to the last pile is emptied, and the last pile becomes the
same as one of the other piles. Thus, we essentially discarded the two
last piles. We need to look at the ending condition. If n is odd, we will
have one pile at the end that requires one move. If n is even, we will
have two piles with the different number of coins, so we will need two
moves. Thus the answer for this strategy is bn/2c+ 1.

Let us prove that it is optimal. First we show by induction that
an − a1 =

∑n−2
i=1 ai. By the third observation there must be a move

that involves the n-th pile and doesn’t involve any of the first n − 2
piles. By observation 1 we can start with this move. We will not
jeopardize the optimality if we use this move to get rid of the two
piles with the largest numbers of coins. Continuing this reasoning, our
strategy must be one of the optimal ones.

The answer is bn/2c+ 1 if the first two piles are different and b(n−
1)/2c+ 1, if they are the same.

3. It follows from number 4. We need 5 moves.
Problem M2. Let fn(x) = 1 + x+ x2

2!
+ ...+ xn

n!
.

(a) Show that fn(x) > 0 for all real x if n is even, and that fn has a
unique real root xn for n odd.

Hint: use the relationship between fn and its derivative.
(b) Show that all complex roots of fn are simple (i.e., if a is a root

of fn then f ′n(a) 6= 0).
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(c) Let n = 2k + 1 for positive integer k, and c = limk→∞
xn

n
(it is

known to exist). Find c. (Represent the answer as a root of an equation,
and compute it to 4th digit precision). Hint: Use the relationship
between fn(x) and the function ex.

Solution: (a) We have f ′n(x) = fn(x) − xn

n!
. Thus for n even, if

fn(x) = 0 then f ′n(x) < 0. This can’t happen for the largest root, so
there is no roots at all. For n odd, there must be a root, and all roots
are negative. So at each root, f ′n(x) > 0. This can’t happen if there is
more than one root. So there is only one root.

(b) If fn(a) = 0 then a 6= 0 so f ′n(a) = −an/n! 6= 0.
(c) The polynomial in question is the Taylor polynomial of the ex-

ponential function. We have

exn =
xn+1
n

(n+ 1)!
(1 +

xn
n+ 2

+
x2n

(n+ 2)(n+ 3)
+ ...),

hence, taking logs,

xn = log
xn+1
n

(n+ 1)!
+ log(1 +

xn
n+ 2

+
x2n

(n+ 2)(n+ 3)
+ ...).

Plugging in cn instead of xn, neglecting the second summand on the
right hand side, and using Stirling’s formula, we find

cn ∼= (log(−c) + 1)n,

i.e. c = 1 + log(−c). Solving this equation gives an approximate value
c ' −0.2785.

Problem M3. Let p be a prime.
(a) Find the number of square matrices A of size n over the field Fp

of p elements such that Ap = A.
(b) Suppose that p ≥ 3. Find the number of square matrices of size

n over Fp such that A2 + 1 = 0 (where 1 is the identity matrix and 0
is the matrix of all zeros). You may have to consider two cases for p.

Solution. (a) The matrix has eigenvalues 0, 1, 2, ..., p − 1 with
eigenspaces of dimension n0, n1, n2, ..., np−1. The group GLn(Fp) acts
on such arrangements transitively, with stabilizer GLn0(Fp) × ... ×
GLnp−1(Fp). So the number of matrices is

N =
∑

n0,...,np−1:
∑

ni=n

∏n−1
j=0 (pn − pj)∏p−1

i=0

∏ni−1
j=0 (pni − pj)

.

(b) Let p = 4k + 3. By quadratic reciprocity, −1 is a non-square
modulo p. So the eigenvalues of A generate a quadratic extension Fp2 ,
and n has to be even (n = 2m), otherwise there is no such matrices.
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In fact, A defines a structure of an Fp2-vector space on F2m
p . So the

stabilizer of A is GLm(Fp2), thus the answer is

N =
|GL2m(Fp)|
|GLm(Fp2)|

=
m∏
i=1

(p2m − p2i−1).

If p = 4k+ 1, −1 is a square and the eigenvalues of A are in Fp, so the
problem is analogous to (a). The answer is

N =
∑

n0,n1:n0+n1=n

∏n−1
j=0 (pn − pj)∏1

i=0

∏ni−1
j=0 (pni − pj)

.

Problem M4. Suppose we are given integers m,n > 0, and a
collection S of (distinct) subsets of some ambient set A, each of size
at most m. Assume |S| > (n − 1)mm!. Prove that there exist n sets
A1, . . . , An ∈ S such that the intersections Ai ∩Aj are the same for all
pairs (i, j) with i 6= j.

Solution: It’s enough to prove that if |S| > (n− 1)m then either S
contains n disjoint sets, or there are at least |S|/[(n − 1)m] sets in S
which all have a common element (then use induction by m). Indeed,
assume S does not contain n disjoint sets. Assume k is the maximal
number of disjoint sets it contains (k is at most n− 1). Consider those
k sets whose union contains at most (n− 1)m elements. Any other set
must intersect this union (otherwise there will be k + 1 disjoint sets),
so by pigeonhole principle there are at least |S|/[(n−1)m] sets sharing
an element.

Problem M5. Find the number of colorings of the faces of the
cuboctahedron (https://en.wikipedia.org/wiki/Cuboctahedron) in
n colors, up to rotations (i.e. two colorings equivalent by rotation are
regarded as the same).
Solution: Using Polya’s enumeration theorem one gets

N =
1

24
(n14 + 3n8 + 6n7 + 8n6 + 6n5).

Problem M6. Let Di, i ≥ 1 be disks of radii ri < 1 contained in
the unit disk D, such that D = ∪i≥1Di.

(a) Show that for each 0 < a < 1 the series
∑

i r
a
i is divergent.

(b) Show that
∑

i ri is divergent.
(c) For any a > 1, can you pick Di so that

∑
i r

a
i is convergent?

(d) Can you solve (a),(b) if the union of the disks Di is not necessarily
the whole D but a subset D′ ⊂ D of full area (i.e., area π)?
Hint. Consider the intersection of Di with the circle of radius 1− t

centered at the origin, or (for (d)) the annulus between this circle and
the unit circle.
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Solution. (a) We may assume that ri → 0 as i → ∞, otherwise
there is nothing to prove. Let t > 0 be a small number, and consider
the circle x2 + y2 = (1− t)2. Let N > 1 be fixed. What is the maximal
portion of this circle that can be covered by a disk of radius r, where
Nt < r < 1? Clearly, the optimal position is when the circle of radius r
touches the unit circle. So say it has the equation (x−1+r)2+y2 = r2.
Subtacting, we get

2x(1− r)− (1− r)2 = (1− t)2 − r2.
After simplifications, this gives

x = 1− t− t2/2
1− r

for the upper intersection point of the two circles. Thus, the angle
covered is

α = 2 arccos
x

1− t
= 2 arccos

1− t−t2/2
1−r

1− t
.

On the other hand, if r ≤ Nt then for the upper intersection point we
have y ≤ r. So, since the circle of radius 1 − t is covered completely,
for sufficiently small t we have∑

i:ri>Nt

arccos
1− t−t2/2

1−ri
1− t

+
∑

i:ri≤Nt

arcsin
ri

1− t
≥ π.

Now use the inequalities

arccos(1− u) < Cu1/2, arcsin(u) < Cu,

for small u > 0 and some C > 0. Sending t → 0 and using this
inequality, we get ∑

i:ri>Nt

(tri)
1/2 +

∑
i:ri≤Nt

ri ≥ K

for small enough t and some fixed K > 0. This means that for any
1/2 < a < 1, ∑

i

t1−arai ≥ L

for small t and a fixed constant L > 0. So∑
i

rai ≥ Lta−1

for small t and a fixed constant L > 0. Sending t to zero, we get the
statement.

(b) Suppose for the sake of contradiction that
∑

i ri <∞.
10



Then
∑

i:ri≤Nt ri → 0 as t → 0, so for sufficiently small t we have
from the above: ∑

i:ri>Nt

(tri)
1/2 ≥ K/2.

We can replace t with ri/N . So we get

N−1/2
∑

i:ri>Nt

ri ≥ K/2.

Keeping N fixed and sending t to zero, we get

N−1/2
∑
i

ri ≥ K/2

Thus
∑

i ri ≥ N1/2K/2 for any N , a contradiction.
(c) Start with a disk D1 of radius 1 − t1 centered at the origin, for

a small enough t1. Then cover its boundary with disks D2, ...Dn+1

centered at vertices of a regular n-gon, with radii equal to the sides
of the n-gon, and n being the smallest number so that these disks fit
into the unit disk. Take the largest disk centered at the origin that’s
covered completely (of radius 1 − t2 for some t2 < t1), and repeat the
procedure.

(d) The argument is the same, replacing the circle of radius 1 − t
with the band between this circle and the unit circle. (This argument
can also be used for (a),(b),(c)).
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Alternative solutions of M6, by P. Suwara.

Part a)

Follows from b) by a simple comparison test.

Part b)

The reader might notice that changing disks to other shapes and ri
to their diameters does not change the first proof below.

Projection on a diameter. Let π : D → I be an orthogonal projec-
tion of D onto one of its diameters I. Define functions (one could say
“random variables”) fi : I → R by formula

fi(x) =

{
1 x ∈ π(Di)

0 x /∈ π(Di)
.

We see that ∫
I

fi(x) dx = |π(Di)| = 2ri.

Define f : I → R̄ = R ∪ {∞} by

f =
∑
i

Xi

We now have ∫
I

f(x) dx =
∑
i

∫
I

fi(x) dx = 2
∑
i

ri.

Therefore it suffices to prove that f(x) =∞ for almost all x ∈ I.
We now give another interpretation of f . Define L(x) to be the line

in R2 which is perpendicular to I and passes through point x ∈ I.
Define J(x) = L(x) ∩D, the intersection of this line with the disk D.
Then fi(x) = 1 if and only if J(x) ∩ Di is nonempty. If follows that
f(x) is the number of disks Di that intersect J(x).

Suppose there is a finite number of Di that intersect J(x) for a fixed
x. We show that endpoints of J(x) are points of tangency of D and
some of the disks Di. Take any sequence of points yi ∈ J(x) converging
to a chosen endpoint p of J(x). Since a finite number of disks Di covers
J(x), therefore there is a disk Dj such that yi ∈ Dj for infinitely many i.
Take subsequence zi ∈ J(x)∩Dj. Now, zi converge to p ∈ ∂J(x) ⊂ ∂D,
but also zi ∈ Dj, so p ∈ D̄j. In fact, since p ∈ ∂D, therefore p cannot
be in the interior of Dj, so p ∈ ∂Dj. Therefore p is a point of tangency
of Dj and D.

12



But the number of disks Di is countable and each of them can have at
most 1 point of tangency with D, so for all x besides at most countable
number of them, f(x) =∞. Finally∑

i

ri =
1

2

∫
I

f(x) dx =∞.

Limiting circles. This proof is based on the hint. We consider circles
Ct of radius 1 − t concentric with D. Each such circle is covered by
disks Di. Assume

∑
i ri is convergent.

Lemma 0.1. Let CR be a circle of radius R in the plane. Let Dr be
a disk of radius r in the plane. Then |CR ∩ Dr| < 2πr, that is, Dr

covers an arc of CR of length less than 2πr.

Proof. If R ≤ r, then CR has length less than 2πr, so there is nothing
to prove.

Assume R > r. If CR and Dr do not intersect, there is nothing to
prove.

Otherwise, let CR and ∂Dr intersect at points p, q. These points
divide CR into two arcs. The longer arc contains a diameter of CR,
which is longer than the diameter of Dr, so it cannot be contained in
Dr. Therefore the shorter arc is contained in Dr, denote this arc A.
Let D′ be the disk with diameter I. D′ contains the arc A since D′

intersects CR and does not contain the longer arc CR \ A (because of
the same diameter argument as above).

Denote by l the length of I and by 2θ the angle of arc A. The length
of A is equal to 2θR, the length of I is equal to l = 2R sin θ. Now,
since sin is concave on [0, π/2], sin(0) = 0 and sin(π/2) = 1, therefore
we have

sin(x) = sin

(
π − 2x

π
· 0 +

2x

π
· π

2

)
≥ π − 2x

π
·sin(0)+

2x

π
·sin

(π
2

)
=

2x

π

And it follows that

πl/2 = πR sin θ ≥ 2Rθ = |A|
and finally

2πr > 2rπ/2 ≥ lπ/2 = πl/2 ≥ |A|
since I is contained in Dr, and therefore not longer than 2r. �

Take some 0 < t1 < 1. We know Ct1 is covered by disks Di. Let
J1 = {i ∈ N : Di ∩ Ct1 6= ∅} be the set of indices of disks intersecting
Ct1 . Let T = {i ∈ N : Di is tangent to D} enumerate disks that are
tangent to D. Let T1 = T ∩ J1. The reader should notice that in b)
we could use compactness of a circle to prove J1 can be shrunk to be

13



finite and still contain enough indices to cover Ct1 , but this argument
no longer works in d). Therefore we choose a longer path.

Notice that for each i ∈ T1, Di is tangent to D and intersects Ct1 , so
it has diameter 2ri which is at least t1. Therefore, if T1 is an infinite
set, then

∑
i ri is infinite, contradiction. Therefore T1 is finite.

Notice that for each i we have limt→0 |Di∩Ct| = 0. Since T1 is finite,
there is t1 > t2 > 0 such that |Ct2 \

⋃
i∈T1

Di| ≥ π. Notice that Ct2 is
intersected by at most finitely many disks Di for i ∈ J1\T1. Otherwise,
for each such disk we would have 2ri ≥ t1− t2 and it would follow that∑

i ri = ∞. But for i ∈ J1 \ T1 one can find t2 large enough so that
Ct2 ∩Di = ∅. It follows that for such t2 we get

∣∣∣∣∣Ct2 \
⋃
i∈J1

Di

∣∣∣∣∣ ≥ π.

We now describe the inductive procedure to construct 1 > t1 > t2 >
. . . > 0 such that for Jk = {i ∈ N : Di ∩ Ctk 6= ∅}, we have

∣∣∣∣∣∣Ctk \
⋃

i∈Jk−1

Di

∣∣∣∣∣∣ ≥ π.

As for k = 2, we take Tk = T ∩ Jk, by the same arguments Tk is finite
and for sufficiently small t we have Ct ∩ Di = ∅ for i ∈ Jk \ Tk, and
for sufficiently small tk+1 we also have |Ctk \

⋃
Tk
Di| ≥ π so tk is as

wished.
Notice that if Di intersects Ctk−1

and Ctk+1
, then it intersects Ctk .

Therefore we have ∣∣∣∣∣∣Ctk \
⋃

i∈J1∪...∪Jk−1

Di

∣∣∣∣∣∣ ≥ π.

But Ctk is covered with Di, so if we denote Sk = Jk \ (J1 ∪ . . . ∪ Jk−1)
then ∣∣∣∣∣Ctk ∩

⋃
i∈Sk

Di

∣∣∣∣∣ ≥ π

14



and since Sk are disjoint, it follows that, using the lemma,

2π
∑
i

ri ≥2π
∑
k

∑
i∈Sk

ri

≥
∑
k

∑
i∈Sk

|Ctk ∩Di|

≥
∑
k

∣∣∣∣∣Ctk ∩
⋃
i∈Sk

Di

∣∣∣∣∣
≥
∑
k

π

=∞
and the proof is finished.

Part c)

Let Yn = {(i/2n, j/2n) : i, j ∈ Z} for each n ∈ N be a square lattice
in the plane. Notice that disks of radius 2−n centered at points of Yn
cover the plane since squares with side length 2−n centered at vertices
of Yn form a tiling of the plane and are contained in these disks.

Let Zn = {x ∈ Yn : 1 − 10 · 2−n ≤ ‖x‖ ≤ 1 − 2 · 2−n} for n ≥ 0.
Denote B(a, b) = {x ∈ R2 : 1 − a < ‖x‖ < 1 − b}. In other words,
Zn = Yn ∩ B(10 · 2−n, 2 · 2−n). Let Dn,i be disks centered at vertices
of Zn of radius 2−n. Let (Di) be the sequence of all these disks for
n = 1, 2, . . .. We claim that |Zn| ≤ C2n for some constant C > 0. It
quickly follows that for a > 1∑

i

rai =
∑
n

|Zn|2−an = C
∑
n

2(1−a)n <∞

since 1− a < 0 and this is a geometric series. Secondly, we claim that
Di cover D.

Let us now prove the first claim. Notice that disks of radius 2−n−1

centered at points of Zn are disjoint and contained in B(10 · 2−n +
2−n−1, 2 ·2−n−2−n−1), in particular in B(11 ·2−n, 0), which (for n ≥ 4)
has area

π(1− (1− 11 · 2−n)2) ≥ 22π · 2−n

and since these small disks have area 2−2n−4π, therefore there is at
most

22π · 2−n

2−2n−4π
= 352 · 2−n

of these small disks, so

|Zn| ≤ 352 · 2−n,
15



as wished.
We prove the second claim by proving that disks Dn,i cover the band

Bn = B(8 · 2−n, 4 · 2−n) if n > 3 or the disk Bn = B(0, 4 · 2−n) if n 6= 3.
Indeed, all the points inside Bn are at least 2 ·2−n apart from boundary
of Bn. Take a point x ∈ Bn. It is contained in some square S of side 2−n

with vertices in Yn. This square S is contained in a disk D′ of radius
2 · 2−n centered at x, which is contained in B(10 · 2−n, 2 · 2−n) since
x ∈ B(8 · 2−n, 4 · 2−n). So square S is contained in B(10 · 2−n, 2 · 2−n),
therefore all its vertices are in Zn, so S is covered by disks Dn,i and
therefore x is covered by these disks. Which finishes the proof of this
claim.

And it finishes the proof of part c).

Part d)

The “Projection on a diameter” proof generalizes easily since by
Fubini’s theorem, for almost all x we have that almost all points of
J(x) are covered by disks Di.

The “Limiting circles” proof generalizes easily since we only used the
fact that the full measure of almost all Ct are covered, which follows
from Fubini’s theorem. It also can be refined to work with bands, but
with some, possibly unpleasant, technicalities.
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