Partially Directed nil-Temperley-Lieb Algebras

Maya Sankar
mentor: Dr. Tanya Khovanova
PRIMES 2016 Conference

May 21, 2016
nil-Temperley-Lieb (nTL) Algebras

Algebra based on a graph G. One generator per vertex: x_1, x_2, x_3.

$x_2 x_1 x_3 x_2 = x_2 x_3 x_1 x_2$ is irreducible.
nil-Temperley-Lieb (nTL) Algebras

Algebra based on a graph G. One generator per vertex:

- x_1, x_2, x_3.
- $x_i^2 = 0$.
- For two adjacent vertices i and j, $x_i x_j x_i = x_j x_i x_j = 0$.
- For two nonadjacent vertices i and j, $x_i x_j = x_j x_i$.
- A monomial that does not equal 0 is called **irreducible**.

Graph:

1 -- 2 -- 3

Diagram:
nil-Temperley-Lieb (nTL) Algebras

- Algebra based on a graph G. One generator per vertex: x_1, x_2, x_3.
- $x_i^2 = 0$.
- For two adjacent vertices i and j, $x_i x_j x_i = x_j x_i x_j = 0$.
- For two nonadjacent vertices i and j, $x_i x_j = x_j x_i$.
- A monomial that does not equal 0 is called irreducible.

Example

$x_3 x_1 x_2 x_3 = x_1 x_3 x_2 x_3 = 0$ is reducible.

$x_2 x_1 x_3 x_2 = x_2 x_3 x_1 x_2$ is irreducible.
Dimension of the Algebra

The **dimension** of the algebra is the number of distinct irreducible monomials.
The **dimension** of the algebra is the number of distinct irreducible monomials.

In G_1, these monomials are

$1, \ x_1, \ x_2, \ x_3, \ x_1x_2, \ x_1x_3, \ x_2x_3, \ x_3x_2, \ x_1x_2x_3, \ x_1x_3x_2$

and the dimension is 10. Not counted are repeated monomials ($x_2x_1 = x_1x_2$ and $x_3x_1 = x_1x_3$) and reducible monomials ($x_2x_3x_2 = 0$ and $x_3x_2x_3 = 0$).
The **dimension** of the algebra is the number of distinct irreducible monomials.

In G_1, these monomials are

$$1, \ x_1, x_2, x_3, \ x_1x_2, x_1x_3, x_2x_3, x_3x_2, \ x_1x_2x_3, x_1x_3x_2$$

and the dimension is 10. Not counted are repeated monomials ($x_2x_1 = x_1x_2$ and $x_3x_1 = x_1x_3$) and reducible monomials ($x_2x_3x_2 = 0$ and $x_3x_2x_3 = 0$).

In G_2, there is an infinite irreducible monomial:

$$x_1x_2x_3x_1x_4x_5x_1x_2x_3x_1x_4x_5 \ldots$$

$$= x_1x_3x_2x_1x_5x_4x_1x_3x_2x_1x_5x_4 \ldots$$
Theorem

The nTL algebra on G is finite iff G is a Dynkin diagram.
Number the vertices 1 to n.

Dimension of the algebra known to be C_{n+1}, the $n + 1^{th}$ Catalan number.
Number the vertices 1 to n.

Dimension of the algebra known to be C_{n+1}, the $n + 1$th Catalan number.

Each monomial can be uniquely written as a series of decreasing runs, with increasing peaks and valleys.

This is the lexicographically smallest representation of the monomial.
Number the vertices 1 to n.

Dimension of the algebra known to be C_{n+1}, the $n + 1^{\text{th}}$ Catalan number.

Each monomial can be uniquely written as a series of decreasing runs, with increasing peaks and valleys.

$(x_3 x_2 x_1) (x_5 x_4 x_3 x_2) (x_7 x_6)$

- This is the lexicographically smallest representation of the monomial.

If peaks don’t increase:

$x_4 x_3 x_2 x_1 x_4 x_3 = x_4 x_3 x_2 x_4 x_1 x_3 = x_4 x_3 x_4 x_2 x_1 x_3 = 0$
Motivation

- Map to the set of permutations on $n + 1$ elements: if x_i is taken to the transposition of the i^{th} and $i + 1^{th}$ elements.
 - By this construction, the elements of the algebra are 321-avoiding permutations.
Motivation

- Map to the set of permutations on $n + 1$ elements: if x_i is taken to the transposition of the i^{th} and $(i + 1)^{th}$ elements.
 - By this construction, the elements of the algebra are 321-avoiding permutations.
- Definitions similar to those of Coxeter groups. The elements of the algebra correspond to elements of Coxeter groups satisfying certain properties.
Partially Directed nTL Algebras

- Based on a graph G with some directed and some undirected edges.
- $x_i^2 = 0$.
- For two nonadjacent vertices i and j, $x_i x_j = x_j x_i$.
- For two vertices i and j connected by an undirected edge, $x_i x_j x_i = x_j x_i x_j = 0$.
Partially Directed nTL Algebras

Based on a graph G with some directed and some undirected edges.

- $x_i^2 = 0$.
- For two nonadjacent vertices i and j, $x_ix_j = x_jx_i$.
- For two vertices i and j connected by an undirected edge, $x_ix_jx_i = x_jx_ix_j = 0$.
- For two vertices i and j with a directed edge from i to j, $x_ix_jx_i = 0$.
Partially Directed nTL Algebras

Based on a graph G with some directed and some undirected edges.

- $x_i^2 = 0$.
- For two nonadjacent vertices i and j, $x_i x_j = x_j x_i$.
- For two vertices i and j connected by an undirected edge, $x_i x_j x_i = x_j x_i x_j = 0$.
- For two vertices i and j with a directed edge from i to j, $x_i x_j x_i = 0$.

The example has relations $x_2 x_3 x_2 = 0$ and $x_5 x_4 x_5 = 0$, but not $x_3 x_2 x_3 = 0$ or $x_4 x_5 x_4 = 0$.
Dimensions of Partially Directed nTL algebras

Theorem

The nTL algebra on a partially directed graph G is finite iff G is a path graph with all directed edges going in the same direction.
Each monomial can be written uniquely as a series of decreasing runs with increasing valleys. For example,
\[(x^5 x^4 x^3 x^2 x^1) (x^7 x^6 x^5 x^4 x^3) (x^6 x^5 x^4) (x^7)\].

There are \(n + 1\) choices for the run with valley \(x^1\):
\[1, x^1, x^2 x^1, \ldots, x^n x^{n-1} \ldots x^2 x^1\].

Similarly, there are \(n\) choices for the run with valley \(x^2\), \(n-1\) choices for the run with valley \(x^3\), and so on.
Each monomial can be written uniquely as a series of decreasing runs with increasing valleys. For example,

\[(x_5 x_4 x_3 x_2 x_1) (x_7 x_6 x_5 x_4 x_3) (x_6 x_5 x_4) (x_7).\]

There are \(n + 1\) choices for the run with valley \(x_1\):

1, \(x_1\), \(x_2 x_1\), \ldots, \(x_n x_{n-1} \ldots x_2 x_1\).

Similarly, there are \(n\) choices for the run with valley \(x_2\), \(n - 1\) choices for the run with valley \(x_3\), and so on.
Theorem

There are \((n + 1) \times n \times (n - 1) \times \ldots \times 2 = (n + 1)!\) elements in the maximally directed algebra.
Maximally Directed nTL Algebras

Theorem

There are \((n + 1) \times n \times (n - 1) \times \ldots \times 2 = (n + 1)!\) elements in the maximally directed algebra.

Mapping the generator \(x_i\) to the transposition of \(i\) and \(i + 1\) in the set of permutations on \(n + 1\) elements, each irreducible monomial corresponds to a different element of the set of permutations on \(n + 1\) elements.
Peaks and Valleys

Every decreasing run has a peak and valley: $x_5x_4x_3x_2x_1$.
Every decreasing run has a peak and valley: \(x_5 x_4 x_3 x_2 x_1 \).

Every partially directed nTL algebra is a subalgebra of the maximally directed nTL algebra. Thus,

Theorem

The monomials of a partially directed nTL algebra are sequences of decreasing runs with increasing valleys.
Conditions on the Peaks

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If there is an undirected edge from (i) to (i + 1) and there are two peaks with (from left to right) (p_1 \geq i + 1) and (p_2 = i + 1), there must be a peak of (i) between (p_1) and (p_2).</td>
</tr>
</tbody>
</table>
Conditions on the Peaks

Theorem

*If there is an undirected edge from i to $i + 1$ and there are two peaks with (from left to right) $p_1 \geq i + 1$ and $p_2 = i + 1$, there must be a peak of i between p_1 and p_2."

For example, when there is an undirected edge between 3 and 4 ($i = 3$), $x_5x_4x_3x_2x_1x_3x_2x_4$ is irreducible, but $x_5x_4x_3x_2x_1x_2x_4$ is not.

This theorem completely describes the irreducible monomials in the partially directed nTL algebras.
Corollary

There is no condition on the peaks of the maximally directed algebra.
Conditions on the Peaks

Corollary

There is no condition on the peaks of the maximally directed algebra.

Corollary

In the nTL algebra, peaks must be increasing.
Conditions on the Peaks

Corollary

There is no condition on the peaks of the maximally directed algebra.

Corollary

In the nTL algebra, peaks must be increasing.

Corollary

In the algebra based on the “undirected-directed” graph shown, peaks must strictly increase or remain higher than k.
Special Cases

Dimension: $C_n + C_{n+1} - 1$, where C_n is the n^{th} Catalan number.
Special Cases

Dimension: $C_n + C_{n+1} - 1$, where C_n is the n^{th} Catalan number.

Dimension: $\binom{2n}{n} = (n + 1)C_n$
Future research

- Find a general formula to calculate the dimension of any partially directed nTL algebra.
Future research

- Find a general formula to calculate the dimension of any partially directed nTL algebra.
- Further study which permutations are represented by a partially directed nTL algebra.
Future research

- Find a general formula to calculate the dimension of any partially directed nTL algebra.
- Further study which permutations are represented by a partially directed nTL algebra.
- A directed edge between i and j means changing the relation $x_i x_j x_i = x_j x_i x_j = 0$ to $x_i x_j x_i = 0$. What if we changed it to $x_i x_j x_i = x_j x_i x_j$?
Acknowledgements

- Dr. Khovanova for mentoring this project
- Professor Postnikov for suggesting this project
- The PRIMES program