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Why Logging is Important — Durability
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How to log?

The algorithm must be more scalable and efficient than
current algorithms

Serial logging

Batch logging

Parallel logging



Transaction Dependency

If a transaction is dependent
on another transaction, they
must be logged in order

The logging algorithm must
account for these
dependencies!
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Serial Logging

® The easiest solution to the dependency problem: log transactions in order

® Each transaction acquires a unique Log Sequence Number (LSN) at commit
time.




Optimizing Serial Logging

Standard,
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Batch Logging

e With serial logging, each transaction
needs an LSN from the Global LSN

e Quickly becomes bottleneck with large
number of transactions
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Batch Logging

Batch logging provides one solution to this problem by having multiple loggers with multiple /ocal
LSNs instead of one global LSN. This removes the bottleneck

Serial Logging Batch Logging
LSN
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Batch Logging
Batch Logging
e Assume dependencies between
loggers
e Sync before returning to user Log 1 Log 2 Log 3
e Our implementation: Flush all
loggers when one becomes full
e Drawback: high latency

time
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Transaction Dependency

e No dependency

e RAW (Read After Write)
e WAW (Write After Write)
e WAR (Write After Read)
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Transaction Dependency
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Transaction Dependency
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Transaction Dependency

Independent Logging?
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Transaction Dependency
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Transaction Dependency
Independent Logging?
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Transactions Parallel Logger
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Transactions Parallel Logger
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Serial Batch Parallel
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Scalability and Results

Average Log Time per Txn (s)
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Batch Logging Results
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Conclusion and Future Work

® Accomplishments
o Implemented serial, batch, and parallel logging
o Determined areas of improvement
o Tested scalability and efficiency

® Future Goals

Gather results for parallel logging
Other optimizations for serial logging
Log recovery

Publish paper

O O O O

31



Special thanks to...

® Our mentor, Xiangyao Yu
® Prof. Srini Devadas for his help and guidance
® The PRIMES program

32



Thank you!




