Scalable Logging Algorithm for in-Memory
Database Systems

Henry Liu, Justin Kaashoek, Siye Zhu



Database Management Systems

OLTP
(Online Transaction amazon
\./‘7

Processing)
ATM

Online Shopping

Retail Sales

Financial
Transaction




Why Logging is Important — Durability

Checking Account: $0

T

Transaction 1
Deposit $100 to checking

Checking: $100

v

Checking: ?

Transaction 2
Withdraw $100 from checking




Why Logging is Important — Durability

Checking Account: $0

T

Transaction 1
Deposit $100 to checking

Checking: $100

SYSTEM
CRASH!

v

Checking: ?

Transaction 2
Withdraw $100 from checking




Why Logging is Important — Durability

Checking Account: $0

T

Transaction 1
Deposit $100 to checking

Checking: $100

Logging solves this problem!!!

SYSTEM
CRASH!

v

Checking: ?

Transaction 2
Withdraw $100 from checking




Why Logging is Important — Durability

Checking Account: $0

T

Write to persistent
storage

Transaction 1
Deposit $100 to checking

Checking: $100

Logging solves this problem!!!

SYSTEM
CRASH!

v

Checking: ?

Transaction 2
Withdraw $100 from checking




How to log?

The algorithm must be more scalable and efficient than
current algorithms

Serial logging

Batch logging

Parallel logging



Transaction Dependency

If a transaction is dependent
on another transaction, they
must be logged in order

The logging algorithm must
account for these
dependencies!

Transaction 1

Transaction 2

Dependency!
Write(A) =
ead(A)
Write(B)
/\ Logging
Logging M




Serial Logging

® The easiest solution to the dependency problem: log transactions in order

® Each transaction acquires a unique Log Sequence Number (LSN) at commit
time.




Optimizing Serial Logging

Standard,
without
optimization

With
Optimization

10



Batch Logging

e With serial logging, each transaction
needs an LSN from the Global LSN

e Quickly becomes bottleneck with large
number of transactions

1



Batch Logging

Batch logging provides one solution to this problem by having multiple loggers with multiple /ocal
LSNs instead of one global LSN. This removes the bottleneck

Serial Logging Batch Logging
LSN
LSN
LSN
LSN+3
LSN

LSN




Batch Logging
Batch Logging
e Assume dependencies between
loggers
e Sync before returning to user Log 1 Log 2 Log 3
e Our implementation: Flush all
loggers when one becomes full
e Drawback: high latency

time




time

Txn 1

Txn 2

Txn 3

Transaction Time
B Operations

14



time

Txn 1

Txn 2
Txn 3

Serial Logging

Transaction Time
B Operations

Log Time

Wait Time
== Commit

15



time

Serial Logging TI)%nz:];cc:h Logging

Txn 1

16



Transaction Dependency

e No dependency

e RAW (Read After Write)
e WAW (Write After Write)
e WAR (Write After Read)

Txn 1
Read(A)

C Logging

Logging

Txn 2

Read(A)
Write(B)

Independent Logging?

17



Transaction Dependency

e No dependency

e RAW (Read After Write)
e WAW (Write After Write)
e WAR (Write After Read)

Txn 1
Read(A)

C Logging

Logging

Txn 2

Read(A)
Write(B)

Independent Logging?
YES

18



Transaction Dependency

e No dependency
e RAW (Read After Write)
e WAW (Write After Write)
e WAR (Write After Read)

Txn 1
Write(A) ~

C Logging

T~

Logging

Txn 2

Read(A)
Write(B)

Independent Logging?
YES

19



Transaction Dependency

e No dependency
e RAW (Read After Write)
e WAW (Write After Write)
e WAR (Write After Read)

Txn 1
Write(A) ~

C Logging

T~

Logging

Txn 2

Read(A)
Write(B)

Independent Logging?
YES

No

20



Transaction Dependency

Independent Logging?
e No dependency YES

e RAW (Read After Write) No
e WAW (Write After Write)

e WAR (Write After Read)
Txn 1 Txn 2

Write(A) ~\

Write(A)
Write(B)

C Logging

Logging




Transaction Dependency
Independent Logging?

e No dependency YES
e RAW (Read After Write) No
e WAW (Write After Write) No
e WAR (Write After Read)
Txn1 Txn 2
Wnéce(A) i\ Write(A)
Write(B)

C Logging

Logging




Transaction Dependency

Independent Logging?
e No dependency YES

e RAW (Read After Write) No
e WAW (Write After Write) No

e WAR (Write After Read)
Txn 1 Txn 2

Read(A) ~\

Write(A)
Write(B)

C Logging

Logging




Transaction Dependency
Independent Logging?

e No dependency YES
e RAW (Read After Write) No
e WAW (Write After Write) No
e WAR (Write After Read) YES
Txn 1 Txn 2
Read(A) ~
; \ Write(A)
Write(B)
C Logging
Logging




time

A

Transactions
Txn 1

Txn 2

Transaction Time
Operations

Log Time

Wait Time
Commit

Parallel Logger
LSN | TxnID

Data Tuple Dependency info

Wait Buffer 1

Logger 2

Wait Buffer 2

25



Transactions Parallel Logger

Txn 1 LSN | TxnID | DataTuple = Dependency info
Txn 2

1 1 C [0, 0]

Wait Buffer 1

time

11 3 [1,1]

Logger 2

j .................. 1 2 B [0,0]

Transaction Time
B Operations Wait Buffer 2

Log Time
Wait Time

== Commit

26



Transactions Parallel Logger

Txn 1 LSN | TxnID | DataTuple = Dependency info
Txn 2
- - 1 1 C [0, 0]
| R A
E 11 3 [1.1]
l__
Logger 2

Transaction Time

B Operations 1 2 B [0,0]
I\;\(/)agit-l;l'?;ee Wait Buffer 2

== Commit




Serial Batch Parallel

Txn 1 Txn 2 Txn 3 Txn 1 Txn 2 Txn 3 Txn 1 Txn 2 Txn 3

Transaction Time EEEEEEEE B
B Operations

Log Time

Wait Time
= Commit 28




Scalability and Results

Average Log Time per Txn (s)

1.80E-04

1.60E-04

1.40E-04

1.20E-04

1.00E-04

8.00E-05

6.00E-05

4.00E-05

2.00E-05

0.00E+00

Log Times for Serial Logging

/N

\\/

10

20 30 40 50 60 70 80 920 100

Buffer Size

===/ threads, no
optimization
===/ threads,
optimization
===8 threads, no
optimization
=2 threads,
optimization
===16 threads, no
optimization
===16 threads,
optimization

29



Batch Logging Results

lime |nSeoords
[ =] [=)

0.2

0.18

016

0.14

012

[

Run Time and Time Spent Logging

4

Number of Loggers

e age Aun Time

m i ver ag = Time Log

30



Conclusion and Future Work

® Accomplishments
o Implemented serial, batch, and parallel logging
o Determined areas of improvement
o Tested scalability and efficiency

® Future Goals

Gather results for parallel logging
Other optimizations for serial logging
Log recovery

Publish paper

O O O O

31



Special thanks to...

® Our mentor, Xiangyao Yu
® Prof. Srini Devadas for his help and guidance
® The PRIMES program

32



Thank you!




