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Abstract. We study the following questions:

(1) What are all solutions to f ◦f̂ = g◦ĝ with f, g, f̂ , ĝ ∈ C(X) being complex

rational functions?

(2) For which rational functions f(X) and g(X) with rational coefficients does

the equation f(a) = g(b) have infinitely many solutions with a, b ∈ Q?

We utilize various algebraic, geometric and analytic results in order to resolve

both (1) and a variant of (2) in case the numerator of f(X) − g(Y ) is an

irreducible polynomial in C[X, Y ]. Our results have applications in various

mathematical fields, such as complex analysis, number theory, and dynamical

systems. Our work resolves a 1973 question of Fried, and makes significant

progress on a 1924 question of Ritt and a 1997 question of Lyubich and Minsky.

In addition, we prove a quantitative refinement of a 2015 conjecture of Cahn,

Jones and Spear.



1. Introduction

Throughout the history of number theory, many mathematicians have studied special cases

of the following question:

Question 1.1. For which rational functions f, g ∈ Q(X) does the equation f(a) = g(b) have

infinitely many solutions in rational numbers a and b?

For example, Archimedes studied an instance of the Pell equation a2 = db2 + 1; we now

know that there are infinitely many integers a, b satisfying this equation for any prescribed

nonsquare positive integer d [21, p. 184]. More recently, Wiles [39] proved that Fermat’s

equation cn = dn + en has no solutions in nonzero integers c, d, e, n with n > 2. Upon

division by en, this result shows that an = bn + 1 has no solutions in nonzero rational

numbers a, b. Another prominent equation in modern number theory is the Weierstrass

equation Y 2 = X3+cX+d, where c and d are fixed rational numbers such that 4c3 6= −27d2.

This equation defines an elliptic curve, and has infinitely many solutions in rational numbers

if and only if the corresponding elliptic curve has positive rank; this rank is the key quantity

in the Birch and Swinnerton–Dyer conjecture, which is one of the most important open

problems in mathematics [10]. This last example is enlightening, because although there

has been progress on describing “how often” such an equation has infinitely many rational

solutions [4–6], it seems that there is no hope of finding all pairs (c, d) for which the equation

has infinitely many solutions. However, each equation of this form has infinitely many

solutions in some algebraic number field K, by which we mean a field which is a finite-

dimensional Q-vector space. It is thus natural to modify Question 1.1 as follows:

Question 1.2. For which rational functions f, g ∈ K(X), where K is an algebraic number

field, does the equation f(a) = g(b) have infinitely many solutions in K?

We prove the following result:

Theorem 1.3. For any number field K and any rational functions f, g ∈ K(X) such that the

numerator of f(X)−g(Y ) is an irreducible polynomial in C[X, Y ], if the equation f(a) = g(b)

has infinitely many solutions in K then one of these holds:

(1.3.1) at least one of the extensions K(X)/K(f(X)) or K(X)/K(g(X)) has Galois closure

of genus 0 or 1

(1.3.2) f = µ ◦ Xc(X − 1)d ◦ ν1 and g = µ ◦ γXc(X − 1)d ◦ ν2 for some coprime positive

integers c, d, some γ ∈ K \ {0, 1}, and some degree-one µ, ν1, ν2 ∈ K(X)

(1.3.3) deg(f), deg(g) ≤ 80.
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Conversely, if (1.3.2) holds then f(X) − g(Y ) is irreducible in C[X, Y ] and f(a) = g(b)

has infinitely many solutions in K. These conclusions are sometimes satisfied when (1.3.1)

holds, but not always. However, for each f(X) ∈ K(X) such that K(X)/K(f(X)) has

Galois closure of genus 0 or 1, there exist rational functions g(X) ∈ K̂(X) of arbitrarily

large degree (with coefficients in a number field K̂ containing K) for which these conclusions

are satisfied over K̂. Finally, we have explicitly determined all rational functions f and g

satisfying both (1.3.3) and the hypotheses of Theorem 1.3.

Since automorphism groups of function fields of genus 0 or 1 are well-understood, condition

(1.3.1) lets us give a precise description of either f or g. For instance, if the Galois closure

of K(X)/K(f(X)) has genus 0 and deg(f) > 60 then f(X) is either Xm or Xm + X−m or

a Chebyshev polynomial Tm(X), up to composition on both sides with degree-one rational

functions. Furthermore, when (1.3.1) holds we can describe both f(X) and g(X): for in-

stance, if f(X) = Xm with m > 6 then there is some degree-one ν ∈ K(X) for which g ◦ ν
is Xch(X)m with h ∈ K(X) and c coprime to m.

Most of the previous work on Question 1.1 addresses the much easier problem of deter-

mining the polynomials f, g ∈ Z[X] for which f(a) = g(b) has infinitely many solutions in

integers a, b. This was solved by Bilu and Tichy [7], building on previous work by Davenport,

Fried, Lewis, Schinzel, Siegel, and others [13, 16, 37, 38]. It is easy to reduce this question

to the case that f(X) − g(Y ) is irreducible in C[X, Y ]. Question 1.1 for rational solutions

has also been studied by several authors. The most general published result was proved by

Avanzi and Zannier [2], and addresses the case that f and g are polynomials of coprime

degrees. Very recently, Carney et al. extended this to arbitrary polynomials f and g [11,12].

Our further extension to rational functions (under some hypotheses) requires completely

different methods than were used previously.

The second main topic of this paper is functional equations, and specifically the following

questions:

Question 1.4. What are all solutions to f ◦ f̂ = g◦ ĝ in rational functions f, f̂ , g, ĝ ∈ C(X)?

Question 1.5. What are all solutions to f ◦ f̂ = g ◦ ĝ in rational functions f, g ∈ C(X) and

meromorphic functions f̂ , ĝ on the complex plane?

Here a meromorphic function is a ratio h1/h2 where h1, h2 are entire functions with h2 6= 0,

and an entire function is a function C→ C defined by a single power series
∑∞

i=0 αiX
i with

infinite radius of convergence. For instance, eX is entire, as are all polynomials, and all

rational functions are meromorphic. Hence Question 1.4 is a more restricted version of

Question 1.5.
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We prove the following result:

Theorem 1.6. For any f, g ∈ C(X) such that the numerator of f(X)−g(Y ) is an irreducible

polynomial in C[X, Y ], if there are nonconstant meromorphic functions f̂ , ĝ on the complex

plane such that f ◦ f̂ = g ◦ ĝ then one of these holds:

(1.6.1) at least one of the extensions C(X)/C(f(X)) or C(X)/C(g(X)) has Galois closure

of genus 0 or 1

(1.6.2) f = µ ◦ Xc(X − 1)d ◦ ν1 and g = µ ◦ γXc(X − 1)d ◦ ν2 for some coprime positive

integers c, d, some γ ∈ K \ {0, 1}, and some degree-one µ, ν1, ν2 ∈ C(X)

(1.6.3) deg(f), deg(g) ≤ 80.

Conversely, if (1.6.2) holds then the meromorphic functions f̂ , ĝ satisfying f ◦ f̂ = g ◦ ĝ
are given by

f̂ = ν−11 ◦
γbXc − 1

γa+bXc+d − 1
◦ h and ĝ = ν−12 ◦

γa+bXc+d − γaXd

γa+bXc+d − 1
◦ h

where h is meromorphic and a, b are integers such that bd − ac = 1. We also know all

possibilities for f , g, f̂ and ĝ when (1.6.3) holds, and to some extent when (1.6.1) holds.

Questions 1.4 and 1.5 are of interest for several reasons. First, Nevanlinna showed that

if nonconstant meromorphic functions f̂ , ĝ satisfy f̂−1(α) = ĝ−1(α) for five distinct values

of α ∈ C, then we must have f̂ = ĝ [27]. Subsequent authors have sought analogous

results when the values α are replaced by finite sets of complex numbers, and more generally

when there are several pairs of finite sets (Si, Ti) such that f̂−1(Si) = ĝ−1(Ti). If there are

nonconstant rational functions f, g for which f ◦ f̂ = g ◦ ĝ, then f̂−1(f−1(U)) = ĝ−1(g−1(U))

for any U ⊂ C, so in this case there are infinitely many pairs (Si, Ti) of finite subsets of C for

which f̂−1(Si) = ĝ−1(Ti). Conversely, it is conceivable that such an infinitude of pairs (Si, Ti)

only exists when there exist such rational functions f, g. Thus Question 1.5 is a fundamental

question about the distribution of preimages of meromorphic functions. We note that quite

special cases of Question 1.5 have themselves been major results, for instance the case that

f, g are polynomials and b, d are entire [31]. Furthermore, Theorem 1.6 answers a question

of Fried [16, Problem 1]. Question 1.4 was originally studied by Ritt [36]; Theorem 1.6

comprises significant progress towards a solution of both Ritt’s question and a question of

Lyubich and Minsky [23, p. 83] on laminations in holomorphic dynamics.

In the special case that f, f̂ , g, ĝ are polynomials, Question 1.4 was solved by Ritt [35]. His

result has been used to prove important theorems in algebra [40], algebraic geometry [24],

differential equations [8,33], dynamical systems [3,18,19], logic [24], topology [29], transcen-

dental number theory [28], and other topics. Solutions to Questions 1.4 or 1.5 would yield
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vast improvements to all of these theorems. Prior to our work, these polynomial results had

been extended only slightly, to cases of Question 1.4 which were not too far from the polyno-

mial case; however, we note that already such extensions required significant effort [30,32,41].

Our Theorem 1.6 goes far beyond all these previous results.

This paper is organized as follows. In the next section we show that Theorems 1.3 and 1.6

are consequences of another result (Theorem 2.3), and present several important tools. We

use these tools in Section 3 in order to prove Theorem 2.3, and then in Section 4 we refine

our three main theorems. In Section 5 we present a dynamical application of our results, and

we conclude in Section 6 with a discussion of future avenues of research. Finally, Section 7

contains several acknowledgements to various individuals and organizations that were crucial

to the success of this research project.

2. Ramification and genus

In this section we show that the number-theoretic Theorem 1.3 and the analytic Theo-

rem 1.6 are both consequences of a single geometric theorem, and then present several tools

we will use to prove this theorem. We begin with some notation.

Definition 2.1 (Ramification Index). The ramification index ef (P ) of a rational function

f(X) at a point P ∈ C ∪ {∞} is the local degree of f(X) near X = P . Concretely, if

P, f(P ) ∈ C, then ef (P ) is the multiplicity of X = P as a root of f(X)−f(P ), and in other

cases ef (P ) can be defined by changing variables to reduce to this case.

Definition 2.2 (Ramification Multiset). The ramification multiset Ef (Q) of a rational func-

tion f at a point Q is the multiset of all values of ef (P ) for P ∈ f−1(Q).

We can now state our main geometric result. Here and elsewhere, the expression

[ac, bd, . . . ] denotes the multiset containing c copies of a, d copies of b, and so on. Also, by

the genus of a plane curve we mean the genus of the corresponding function field.

Theorem 2.3 (LCM Theorem). Let f, g ∈ C(X) have degrees m,n > 0, respectively. Let

Q1, . . . , Qr be the points in C∪{∞} for which either Ef (Qi) 6= [1m] or Eg(Qi) 6= [1n]. If the

numerator of f(X) − g(Y ) defines an irreducible curve of genus 0 or 1, then Fi := Ef (Qi)

and Gi := Eg(Qi) satisfy one of the following:

(2.3.1)
∑r

i=1(1−
1

lcm(Fi)
) ≤ 2

(2.3.2)
∑r

i=1(1−
1

lcm(Gi)
) ≤ 2

(2.3.3) m = n, r = 4, and (after relabeling the Qi’s) we have F1 = G1 = [m], F2 = G2 =

[c,m− c] for some c coprime to m, F3 = G4 = [1m−2, 2], and F4 = G3 = [1m]
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(2.3.4) m,n ≤ 80.

Proof that Theorem 2.3 implies Theorems 1.3 and 1.6. By theorems of Faltings [14] and Pi-

card [34], if the hypotheses of Theorem 1.3 or Theorem 1.6 hold then the numerator of

f(X)− g(Y ) defines a curve of genus 0 or 1, so the hypotheses (and hence the conclusion) of

Theorem 2.3 are satisfied. Plainly (2.3.4) implies (1.3.3) and (1.6.3), so we may assume that

one of (2.3.1)–(2.3.3) holds. Let N be the Galois closure of C(X)/C(f(X)), and let d be the

degree of the extension N /C(f(X)). Then Qi lies under d
lcm(Fi)

points of N , each of which

has ramification index lcm(Fi) in N /C(f(X)). Thus, by applying the Riemann–Hurwitz

genus formula to the extension N /C(f(X)), if (2.3.1) (or likewise (2.3.2)) holds then (1.3.1)

and (1.6.1) hold. Finally, suppose that (2.3.3) holds. Upon replacing f and g by f ◦ ν1
and g ◦ ν2 for suitable degree-one νi ∈ C(X), we may assume that f(∞) = Q1 = g(∞)

and f−1(Q2) = {0, 1} = g−1(Q2) where ef (0) = c = eg(0). Upon replacing f and g by

µ ◦ f and µ ◦ g for a suitable degree-one µ ∈ C(X), we may assume that Q1 = ∞, Q2 = 0,

and the numerator and denominator of f have the same leading coefficient. It follows that

f = Xc(X−1)m−c and g = γXc(X−1)m−c for some γ ∈ C∗, and the reducibility hypothesis

ensures that γ 6= 1. Hence the original f and g satisfy (1.3.2) and (1.6.2). �

Our proof of Theorem 2.3 proceeds by showing that if f, g satisfy the hypotheses of The-

orem 2.3 then the multisets Fi := Ef (Qi) and Gi := Eg(Qi) satisfy several numerical condi-

tions, and then solving the combinatorial problem of determining all collections of multisets

of positive integers which satisfy these conditions. We present these numerical conditions in

the remainder of this section, and then prove Theorem 2.3 in the next section.

The first two numerical conditions satisfied by ramification multisets are∑
P∈f−1(Q)

ef (P ) = deg(f) for each Q ∈ C ∪ {∞}(2.4)

∑
Q∈C∪{∞}

(
deg(f)− |Ef (Q)|

)
= 2 deg(f)− 2.(2.5)

Equation (2.5) is the Riemann–Hurwitz formula for the function field extension

C(X)/C(f(X)). If f, g ∈ C(X) have degrees m,n > 0, and the numerator of f(X) − g(Y )

is irreducible, then this numerator defines a curve of genus g where

(2.6) 2g− 2 = −2m+
∑

Q∈C∪{∞}

∑
a∈Ef (Q)

∑
b∈Eg(Q)

(
a− gcd(a, b)

)
.

Equation (2.6) is a version of the Riemann–Hurwitz genus formula for the function field

extension C(X, Y )/C(Y ) (where f(X) = g(Y )), and was proved by Ritt [35]. In particular,
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if g ∈ {0, 1} then

(2.7)
∑

Q∈C∪{∞}

∑
a∈Ef (Q)

∑
b∈Eg(Q)

(
a− gcd(a, b)

)
∈ {2m− 2, 2m}.

The next two lemmas give new types of constraints on the Fi’s and Gi’s which are crucial

for our work.

Lemma 2.8. If all elements of F1 ∪F2 are even then, for each i > 2, the multiset Fi can be

written as the union of two submultisets each having sum m
2

.

Proof. Upon replacing f by µ◦f for some degree-one µ ∈ C(X), we may assume that Q1 = 0

and Q2 = ∞, so by hypothesis f(X) = h(X)2 for some h ∈ C(X). Then for i > 2 we have

Ef (Qi) = Eh(
√
Qi) ∪ Eh(−

√
Qi), which implies the result by (2.4). �

Lemma 2.9. If the numerator of f(X)− g(Y ) is irreducible then both of these hold:

(2.9.1) For any distinct i, j we have gcd(Fi ∪ Fj ∪Gi ∪Gj) = 1.

(2.9.2) For any distinct i, j, k such that Fi ∪ Fj and Gi ∪ Gj each contain at most two odd

indices, we must have gcd(Fk ∪Gk) ≤ 2.

Proof. We prove the contrapositive. If (2.9.1) fails then we can replace f and g by µ ◦ f
and µ ◦ g for some degree-one µ ∈ C(X), and we may therefore assume that Qi = 0 and

Qj =∞. Since d := gcd(Fi ∪Fj ∪Gi ∪Gj) divides gcd(Fi ∪Fj), we can write f = Xd ◦ f̂ for

some f̂ ∈ C(X), and likewise g = Xd ◦ ĝ. Therefore f(X)− g(Y ) =
∏

ζd=1

(
f̂(X)− ζĝ(Y )

)
is reducible.

Henceforth suppose that (2.9.2) fails. Again we may assume Qi = −1, Qj = 1 and

Qk =∞. First suppose there is an odd prime p which divides gcd(Fk∪Gk). Then the degree-

p Chebyshev polynomial Tp(X) satisfies ETp(Qi) = ETp(Qj) = [1, 2(p−1)/2], ETp(Qk) = [p],

and ETp(Q`) = [1p] for ` /∈ {i, j, k}. Hence∑
S∈C∪∞

∑
a∈ETp (S)

∑
b∈Ea(S)

(
a− gcd(a, b)

)
≤ p− 1 < 2p− 2,

so by (2.6) the numerator of Tp(X) − f(Y ) must be reducible, since otherwise it would

define a curve having negative genus. Then [15, Prop. 2] implies that f = f1 ◦ f2 for some

f1, f2 ∈ C(X) such that the numerators of Tp(X)− z and f1(X)− z have the same splitting

field as one another over C(z), where z is transcendental over C. Since the splitting fieldM
of Tp(X)− z over C(z) is C(y) where yp + y−p = 2z, the Galois group ofM/C(z) is dihedral

of order 2p, so that each non-Galois extension of C(z) contained in M has the form C(x)

where Tp(x) = z. Hence f1 = Tp ◦ h for some h ∈ C(X), so f = Tp ◦ f̂2 where f̂2 := h ◦ f2.
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Likewise g = Tp ◦ g2, so that f(X) − g(Y ) equals Tp(f2(X)) − Tp(g2(Y )), whose numerator

is reducible since it is divisible by the numerator of f2(X)− g2(Y ).

The proof is similar but lengthier when gcd(Fk ∪ Gk) is a power of 2, so for the sake

of brevity, we simply sketch the argument. The main difference is that the ramification of

T2(X) is slightly different from that of Tp(X) for odd p, so that the above argument does

not imply that the numerator of T2(X) − f(Y ) is reducible. However, the above argument

does imply that the numerator of either T2(X) − f(Y ) or T2(X) + f(Y ) is reducible, so

f = ±T2 ◦ f2. Similarly, f = ±T4 ◦ f2 and g = ±T4 ◦ g2, and since both T4(X)− T4(Y ) and

T4(X) + T4(Y ) are reducible it follows that the numerator of f(X)− g(Y ) is reducible. �

3. Proof of LCM Theorem

In this section we prove Theorem 2.3 when either n ≥ 42m or n ≥ m > 150. This

addresses all cases with n ≥ m except when n < 42m ≤ 42 ·150. More intricate (but slightly

lengthier) versions of the arguments presented in this section yield a proof of Theorem 2.3

in all cases.

Proposition 3.1 (Fixed m, Large n). Using the notation and assumptions of Theorem 2.3,

if n ≥ 42m then (2.3.1) holds.

Proof. For each i we write li = lcm(Fi), and we let Di denote the set of proper divisors of

li. For a given i and for d ∈ Di we write ci,d to denote the number of elements j ∈ Gi for

which gcd(j, li) = d. Observe that for any given i we must have n ≥ li · ci,li +
∑

d∈Di
d · ci,d

and therefore ∑
d∈Di

ci,d +
n−

∑
d∈Di

d · ci,d
li

≥ ci,li +
∑
d∈Di

ci,d = |Gi|

By (2.5), we have

(3.2) 2n− 2 ≥
r∑
i=1

(n− |Gi|) ≥
r∑
i=1

(
n−

∑
d∈Di

ci,d −
n−

∑
d∈Di

d · ci,d
li

)
.

Furthermore, by (2.7), we have

2m ≥
r∑
i=1

∑
d∈Di

ci,d
∑
i∈Fi

(i− gcd(d, i)) .

We define s to be the greatest positive number such that for all i and all d ∈ Di∑
i∈Fi

(i− gcd(d, i)) ≥ s

(
1− d

li

)
.
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Multiplying (3.2) by s and simplifying a bit yields

s · n

(
r∑
i=1

(
1− 1

li

)
− 2

)
≤ 2m− 2s,

whence
∑r

i=1

(
1− 1

li

)
− 2 < 2m

ns
. Additionally, for a given i and d ∈ Di, note that because

d < li we must have∑
i∈Fi

(i− gcd(d, i))(
1− d

li

) ≥
∑

i∈Fi
(i− gcd(d, i))

1
2

≥ 1
1
2

= 2,

and therefore we may assume that s ≥ 2. Recalling that
∑r

i=1

(
1− 1

li

)
− 2 < 2m

ns
, we

conclude that
∑r

i=1

(
1− 1

li

)
< 2 + m

n
. Hence by Lemma 3.3, either

∑r
i=1

(
1− 1

li

)
≤ 2 or∑r

i=1

(
1− 1

li

)
≥ 2 + 1

42
. But the latter implies that 1

42
< m

n
or that n < 42m, contradicting

the assumptions of (2.3), and thus
∑r

i=1

(
1− 1

li

)
≤ 2, so we are done. �

Lemma 3.3. If d1, . . . , dq is a finite sequence of integers greater than 1, then S :=∑q
i=1

(
1− 1

di

)
lies in {0} ∪ [1

2
, 1] ∪ [7

6
, 2] ∪ [2 + 1

42
,∞). Furthermore, we have S ≤ 2 if and

only if either q ≤ 2 or the multiset of di’s is one of the following: [24], [33], [2, 42], [2, 3, `]

with 2 ≤ ` ≤ 6, or [22, k] with k > 1.

Proof. Write D for the multiset of di’s. Note that S = 2 when D is [24], [33], [2, 42], or

[2, 3, 6]. Since the value of S becomes strictly larger if we either append a 2 to D or increase

some element of D by 1, and by starting with each of the above four D’s and repeatedly

applying these operations we obtain every D with q > 2 except [2, 3, `] with ` < 6 and [22, k]

with k > 1, this implies the last assertion in the result. Moreover, the smallest value of S

larger than 2 must occur when D arises from a single such operation, so the smallest such S

is 2 + 1
42

which occurs for D = [2, 3, 7]. Likewise, if D = ∅ or D = [22] then S = 0 or S = 1,

so by the same argument the smallest values of S greater than 0 or 1 occur when D = [2] or

D = [2, 3], respectively, and are S = 1
2

and 7
6
. �

In the rest of this section we assume that 150 < m ≤ n ≤ 42m. Our next result provides

a crucial constraint on the multisets Fi and Gi.

Proposition 3.4. Suppose that f and g satisfy the hypotheses of Theorem 2.3, and also

150 < m ≤ n ≤ 42m. For any i, put F := Ef (Qi) and G := Eg(Qi), and let fa and ga be

the numbers of copies of the integer a in F and G, respectively. For any integer c such that

0 ≤ c ≤ 6, one of the following holds:

(3.4.1) There is a positive integer d ≤ c such that fd >
m
d
− (2d+ 3).
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(3.4.2) fa, ga ≤ 4 for 1 ≤ a ≤ c.

Proof. We prove Proposition 3.4 by induction on c. The base case is c = 0, where (3.4.2) is

vacuously true. For the inductive step it is enough to prove that if fa, ga ≤ 4 for 1 ≤ a ≤ c−1

then either fc >
m
c
− (2c+ 3) or fc, gc ≤ 4. By condition (2.7), we have

2m ≥ gc

∞∑
a=1

fa · (a− gcd(a, c)) ≥ gc

∞∑
a=c+1

fa ·
a

2
≥ gc ·

1

2

(
m− cfc −

c−1∑
a=1

afa

)
,

where we used the facts that m =
∑

a afa and if a > c then gcd(a, c) ≤ a
2
. The above

inequality then implies that

(3.5) 4m ≥ gc

(
m− cfc −

c−1∑
a=1

afa

)
≥ gc

(
m− cfc −

c−1∑
a=1

4a

)
≥ gc (m− cfc − 2c(c− 1)) .

Similarly,

(3.6) 4n ≥ fc

(
n− cgc −

c−1∑
a=1

aga

)
≥ fc

(
n− cgc −

c−1∑
a=1

4a

)
≥ fc (n− cgc − 2c(c− 1)) .

Assume that 5 ≤ fc ≤ m
c
− (2c+ 3); we now show that this leads to a contradiction. Here

m− cfc − 2c(c− 1) > 0 and fc > 0, so we may combine (3.5) and (3.6) to get

4m

m− cfc − 2c(c− 1)
≥ gc ≥

1

c

(
n− 2c(c− 1)− 4n

fc

)
.

By clearing denominators we obtain h(fc) ≥ 0, where h(X) is the polynomial

cX2 (n− 2c(c− 1))+X (4mc− 4nc− (m− 2c(c− 1)) (n− 2c(c− 1)))+4n (m− 2c(c− 1)) .

It is easy to check that h(X) is negative when X is either 5 or m
c
− (2c+ 3). Since h(X) has

degree at most 2, and the coefficient of X2 in h(X) is nonnegative, it follows that h(X) is

negative for all X with 5 ≤ X ≤ m
c
− (2c + 3). This yields the contradiction h(fc) < 0, so

our assumption was incorrect and thus either fc ≤ 4 or fc >
m
c
− (2c+ 3).

If fc >
m
c
− (2c+ 3) then we are done. If fc ≤ 4 then (3.5) implies that

4m ≥ gc (m− cfc − 2c(c− 1)) ≥ gc (m− 4c− 2c(c− 1)) = gc (m− 2c(c+ 1)) ;

hence gc ≤ 4m
m−2c(c+1)

< 5, which completes the proof. �

We can improve Proposition 3.4 by strengthening the inequalities used in its proof. In

particular, we can replace (3.5) by

(3.7) 4m ≥
c∑
j=1

gj

(
m− jfj −

j−1∑
a=1

afa

)
,

9



we can make a similar improvement to (3.6), and also for each fixed c we can improve the

inequality gcd(a, c) ≤ a
2

by using the actual value if a ≤ 2c and otherwise using the bound

gcd(a, c) ≤ c. Applying these improvements requires the separate treatment of a large

number of cases, depending on the values of fa and ga for several choices of a, and was done

with the assistance of a computer program. This yields the following result.

Proposition 3.8. Under the hypotheses of Proposition 3.4, if c is an integer with 1 ≤ c ≤ 6

then one of the following holds:

(3.8.1) There is a positive integer d ≤ c such that fd >
m−wd

d
, where w1 = 5, w2 = 12,

w3 = 15, w4 = w5 = 24, and w6 = 36

(3.8.2)
∑

a≤c fa ≤ 4 and
∑

a≤c ga ≤ 4.

Propositions 3.4 and 3.8 show that, for each i, either there is some (necessarily unique)

integer di with 1 ≤ di ≤ 6 for which the sum of the elements of Fi different from di is

bounded by an absolute constant, or else Fi contains a bounded number of elements smaller

than 7 (in which case we define di := ∞). In our proof of Theorem 2.3, we combine this

information across all the different points Qi in order to determine the possibilities for the

multiset D consisting of all di’s greater than 1. We first give a heuristic argument illustrating

our approach. If di ≤ 6 then |Fi| ≈ m
di

, and if di = ∞ then |Fi| is at most m
7

+ c for some

small constant c. By (2.5), we have 2m− 2 =
∑r

i=1(m− |Fi|), so that

(3.9) 2m−
∑
i: di≤6

m
(

1− 1

di

)
≈

∑
i: di=∞

(m− |Fi|),

where each summand on the right side is between 6m
7
−c and m. By Lemma 3.3, the quantity∑

i: di≤6(1 −
1
di

) is either 0 or an element of one of the intervals [1
2
, 1] or [7

6
,∞), so the left

side of (3.9) is either 2m or an element of [m, 3m
2

] or (−∞, 5m
6

]. Since the right side of (3.9)

is a sum of elements of [6m
7
− c,m], the only possibility is that each summand on the right

side is approximately m, whence
∑

d∈D(1 − 1
d
) = 2. This equation implies that D is one of

the multisets

[2, 2, 2, 2], [2, 4, 4], [3, 3, 3], [2, 3, 6], [2, 2,∞], [∞,∞].

Below we prove Theorem 2.3 via a rigorous version of this heuristic argument, first restricting

the possibilities for the Fi’s and then deducing the desired conclusion. In what follows, we

write fi,a for the number of copies of a in the multiset Fi, and we define gi,a analogously.

We begin the proof with two lemmas, and then split the case into three cases: fi,1 ≤
4 for at least four i’s, fi,1 ≤ 4 for at most two i’s, and fi,1 ≤ 4 for exactly three i’s,

which cover all possible situations. The first of these three cases loosely corresponds to

10



D = [2, 2, 2, 2], the second corresponds to D = [∞,∞], and the third corresponds to D =

[2, 4, 4], [3, 3, 3], [2, 3, 6], [2, 2,∞].

Lemma 3.10. If fi,2 >
m
2
− 6 for 1 ≤ i ≤ 4, then

⋃4
i=1Gi = [14, 22n−2] and Gi = [1n] for

i > 4. In particular, (2.3.2) holds.

Proof. Let k be the number of odd elements in
⋃4
i=1Gi. If k ≥ 5 then

2m− 2 ≥
4∑
i=1

∑
a∈Fi

∑
b∈Gi

(
a− gcd(a, b)

)
≥

4∑
i=1

∑
a∈Fi
a=2

∑
b∈Gi
b odd

1 > 5
(m

2
− 6
)
> 2m− 2,

a contradiction. Hence k ≤ 4, so by (2.5) we have

2n− 2 =
r∑
i=1

(
n− |Gi|

)
≥

4∑
i=1

(
n− |Gi|

)
≥ 4n−

(
k +

4n− k
2

)
=

4n− k
2

≥ 2n− 2.

Thus this chain of inequalities must consist of equalities; proceeding from left to right, it

follows that if i > 4 then |Gi| = n (and hence Gi = [1n]); if i ≤ 4 then Gi contains only 1’s

and 2’s; and finally, k = 4. This yields the desired conclusion. �

Lemma 3.11. If |Fi| = 1 then gcd(Fi, Gi) = m or
∑

a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ m

2
. If |Fi| = 2

and n ≤ m + 4 then gcd(Fi, Gi) = m
2

or
∑

a∈Fi

∑
b∈Gi

(
a − (a, b)

)
≥ m

4
. If |Fi| = 3 and

n ≤ m+ 4 then gcd(Fi, Gi) ∈ {m3 ,
m
4
, m

6
} or

∑
a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ m

6
.

Proof. We prove Lemma 3.11 when |Fi| = 1 and Fi = [m]. If m divides each element of

Gi then gcd(Fi, Gi) = m. If Gi contains an element c which is not divisible by m, then∑
a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ m− (m, c) ≥ m

2
. The proofs of the other two assertions are highly

similar. We omit them due to space constraints. �

Proof of Theorem 2.3 when fi,1 ≤ 4 for at least four i’s. Without loss of generality, we may

assume that fi,1 ≤ 4 for 1 ≤ i ≤ 4, so that |Fi| ≤ 4 + m−4
2

= m
2

+ 2 and m − |Fi| ≥ m
2
− 2

for 1 ≤ i ≤ 4. If f1,1 + f1,2 ≤ 4 then |F1| ≤ 4 + m−4
3

= m+8
3

and therefore m− |F1| ≥ 2m−8
3

.

Then
∑

1≤i≤4(m − |Fi|) ≥ 3(m
2
− 2) + 2m−8

3
= 13m

6
− 26

3
> 2m − 2, a contradiction. Thus

f1,1 + f1,2 > 4, and then by Proposition 3.8 we must have f1,2 > m
2
− 6 and similarly

fi,2 >
m
2
− 6 for 2 ≤ i ≤ 4. Lemma 3.10 yields the desired conclusion. �

Proof of Theorem 2.3 when at most two i’s satisfy fi,1 ≤ 4. By Proposition 3.8, if fi,1 > 4

then fi,1 ≥ m− 5, so that |Fi| ≥ m− 4 and therefore m− |Fi| ≤ 4. By (3.6) it follows that

gi,1 ≥ n − 4n
fi,1
≥ n − 4n

m−4 . Hence there are at most two i’s for which 4 < fi,1 < m, since

otherwise

2m =
r∑
i=1

∑
a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ 3(n− 4n

m− 4
) > 2m.
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Since each such i satisfies m− |Fi| ≤ 4, it follows that the sum of the corresponding values

of (m− |Fi|) is at most 8, so (2.5) implies that fi,1 ≤ 4 for at least two (hence exactly two)

values of i.

We may assume that fi,1 ≤ 4 if and only if i ≤ 2. Then gi,1 ≥ n− 4n
m−4 for i ≥ 3, so

2m ≥
∑
i≥3

gi,1
∑
a∈Fi

(a− 1) ≥
∑
i≥3

gi,1(m− |Fi|) ≥ (n− 4n

m− 4
)
∑
i≥3

(m− |Fi|).

This implies
∑

i≥3(m − |Fi|) ≤
2m

n− 4n
m−4

< 3 because n ≤ 42m. If
∑

i≥3(m − |Fi|) = 2, then

by (2.5), 2m− 2 = m− |F1| + m− |F2| +
∑

i≥3(m− |Fi|) so |F1| + |F2| = 4. In particular,

1 ≤ |F1| ≤ 3. We must also have

2∑
i=1

∑
a∈Fi

∑
b∈Gi

(a− (a, b)) ≤ 2m− 2(n− 4n

m− 5
) < 9;

this also implies n ≤ m + 4. If |F1| = 1 and |F2| = 3 then by Lemma 3.11 we can conclude

that gcd(F1, G1) = m, since m
2
> 9, and that gcd(F2, G2) ∈ {m3 ,

m
4
, m

6
}, since m

6
> 9. Then

gcd(F1, F2, G1, G2) > 1, which contradicts (2.9.1). A similar argument demonstrates that

when |F1| = |F2| = 2 or |F1| = 3 and |F2| = 1, we must again have gcd(F1, F2, G1, G2) > 1,

a contradiction. Thus
∑

i≥3(m − |Fi|) ≤ 1, and then by (2.5), 2m − 2 = m − |F1| + m −
|F2| +

∑
i≥3(m − |Fi|), so |F1| + |F2| ≤ 3. If |F1| + |F2| = 2, we must have F1 = F2 = [m]

and then (2.3.1) holds. If |F1| + |F2| = 3, we can write F1 = [m] and F2 = [c,m − c]. Now

an analysis of the multisets Gi, using (2.5) and (2.7), yields (2.3.3). �

Proof of Theorem 2.3 when exactly three i’s satisfy fi,1 ≤ 4. We split this case into four sub-

cases based on how many of the three points satisfy fi,2 > 4. Three of these four subcases

are resolved via the methods used to treat the case when fi,1 ≤ 4 for at least four i’s; due to

space constraints and the similarity of the cases, we sketch the proofs. The fourth subcase,

when exactly two i’s satisfy fi,2 > 4, is more difficult. The full proof of the fourth subcase

is too long to be included here, but we provide a detailed outline of the proof so that the

reader may understand the motivation and important details.

Proof of First Subcase. The first subcase is when all three points satisfy fi,2 > 4. We let

these three points be F1, F2 and F3; by Proposition 3.8, it must be true that fi,1 ≤ 4

for 1 ≤ i ≤ 3. Since we assume that exactly three i’s satisfy fi,1 ≤ 4, for i ≥ 4, we

must have fi,1 > 4. Now by Proposition 3.8, fi,2 > 4 implies that fi,2 ≥ m−12
2

and hence
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|F1|, |F2|, |F3| ≥ m−12
2

. But then by (2.5),

2m− 2 =
r∑
i=1

(m− |Fi|) ≤ 3m− 3

(
m− 12

2

)
+
∑
i≥4

(m− |Fi|)

Recall that since fi,1 > 4 for i ≥ 4, by Proposition 3.8, fi,1 ≥ m− 5 and then by (3.6) we

must have gi,1 ≥ n− 4n
fi,1
≥ n− 4n

m−5 and hence there are at most two i’s for which 4 < fi,1 <

m. Moreover, if Fy and Fz satisfy fy,1, fz,1 > 4 then (m− |Fy|) + (m− |Fz|) ≤ 2, because

otherwise
∑r

i=1

∑
a∈Fi

∑
b∈Gi

(
a−(a, b)

)
would be larger than 2m, thus contradicting (2.7).

In particular, since fi,1 ≤ 4 for 1 ≤ i ≤ 3, this implies that the quantity
∑

i≥4(m− |Fi|)
must be at most 2. Hence

2m− 2 ≤ 3m

2
+ 18 + 2

which implies that m
2
≤ 22 or that m ≤ 44, a contradiction. �

Proof of Second Subcase. The second subcase is when none of the three points satisfies

fi,2 > 4. We let these three points be F1, F2 and F3; we then claim that all three points

must satisfy fi,3 > 4. Indeed, for the sake of contradiction, assume that at least one of

the points, say F1 does not satisfy fi,3 > 4. The maximum possible size of F2 and F3

occurs when they consist of almost entirely 3’s and four 1’s (because they cannot have

more than four 1’s by Proposition 3.8) and is therefore equal to 4+ m−4
3

. By similar logic,

the maximum possible size of F1 occurs when F1 consists of almost entirely 4’s and four

1’s and therefore equals 4 + m−4
4

= m
4

+ 3, and hence

2m− 2 ≥
∑
i≤3

(m− |Fi|) ≥ 3m− 2

(
4 +

m− 4

3

)
− m

4
− 3

which implies 19
3
≥ m

12
or 76 ≥ m, a contradiction. Hence all three points must satisfy

fi,3 > 4 and this subcase loosely corresponds to D = [3, 3, 3]. With the knowledge that

fi,3 > 4 for 1 ≤ i ≤ 3, we can proceed using the exact same techniques used in Lemma

3.10. That is, we use (2.5) to analyze
∑r

i≥4(m − |Fi|) and we use (2.7) to relate F1, F2

and F3 to all the Fi with i ≥ 4; eventually our analysis proves that
∑r

i≥4(m− |Fi|) = 0

and that F1 ∪ F2 ∪ F3 consists entirely of 1’s and 3’s, a similar result to that of Lemma

3.10, and thus illustrates that (2.3.1) must hold in this subcase. �

Proof of Third Subcase. The third subcase is when exactly one of the three points satisfies

fi,2 > 4; we let F1 be this point. We then claim that F2 must satisfy either f2,3 > 4 or

f2,4 > 4 or f2,6 > 4. Observe that if f2,5 > 4 then 4 + m−4
5
≥ |F2| ≥ m−25

5
+ 1 = m

5
− 4;

in other words, |F2| ≈ m
5

. But then f3,k > 4 for any k ∈ {3, 4, 5, 6} would result in a
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contradiction. Indeed, consider that f3,4 > 4 implies that |F3| ≤ m
4

+ 3 whence by (2.5)

2m− 2 ≥
∑
i≤3

(m− |Fi|) ≥ 3m− |F1| − |F2| − |F3|

which with a little substitution becomes

2m− 2 ≥ 3m−
(

4 +
m− 4

2

)
−
(

4 +
m− 4

5

)
−
(m

4
+ 3
)

or m
20
≤ 31

5
or m ≤ 124, a contradiction. Similarly, f3,3 > 4 implies that |F3| ≥ m−12

3
+1 =

m
3
− 3 which can also be seen to contradict (2.5), and analogous arguments demonstrate

that f3,k > 4 for any k ∈ {3, 4, 5, 6} fails. But if f3,k > 4 is false for 3 ≤ k ≤ 6 then

|F3| ≤ 4 + m−4
7

, resulting in another contradiction of (2.5). Hence F2 must satisfy either

f2,3 > 4 or f2,4 > 4 or f2,6 > 4. By further analysis with (2.5), if f2,3 > 4 then f3,6 > 4, if

f2,4 > 4 then f3,4 > 4, and if f2,6 > 4 then f3,3 > 4; hence this case loosely corresponds

to D = [2, 4, 4] if f2,4, f3,4 > 4 and otherwise it loosely corresponds to D = [2, 3, 6].

When D = [2, 4, 4] and f2,4, f3,4 > 4, this subcase is easily resolved by the same

techniques of Lemma 3.10 and the second subcase (when none of the three points satisfies

fi,2 > 4): simple analysis with (2.5) and (2.7). However, when D = [2, 3, 6] and f2,3 > 4

and f3,6 > 4, this subcase is much trickier to resolve. This scenario requires the analysis

of thousands of possibilities, for which we use a computer program. We do not have the

space to present the computer program, but we will illustrate the methodology of the

program by resolving this case with one additional hypothesis: n ≥ 4m.

First of all, by Proposition 3.8 we must have f1,2 ≥ m
2
− 6 and hence by (3.6), g1,2 ≥

1
2
· (n− 4n

f1,2
− 4) = n

2
− 2n

f1,2
− 2 ≥ n

2
− 4n

m−12 − 2. Hence if F1 contains an element greater

than 2 then

2m ≥
r∑
i=1

∑
a∈Fi

∑
b∈Gi

(
a− (a, b)

)
≥ 2g1,2 ≥ n− 8n

m− 12
− 4 > 2m

where the last step is because n ≥ 4m. So F1 cannot contain an element greater than 2,

and thus F1 consists of all 1’s and 2’s.

Similarly, gi,1 ≥ n − 4n
f4,1

for i ≥ 4 and so Fi cannot contain an element greater than

1 for i ≥ 4, and therefore F4, F5, . . . are all equal to [1m]. Observe again that by (3.6),

g3,2 ≥ 1
3
· (n− 12− 4n

f3,2
) so that the only possible elements of F2 are 1, 2 and 3. Similarly,

g3,6 ≥ 1
6
· (n−60− 4n

f3,6
) so that the only possible elements of A3 are 1, 2, 3, 4 and 6. Now,

assume for the sake of contradiction that (2.3.1) and (2.3.2) both fail; then either F2 must

have a 2 or F3 must have a 4 (and both cannot happen, for then
∑r

i=1

∑
a∈Fi

∑
b∈Gi

(
a−

(a, b)
)

would be larger than 2m). Assume henceforth that F2 has a 2; the case where F3

has a 4 has a (nearly) identical proof.
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By (2.5), 3m− (|F1|+ |F2|+ |F3|) = 2m− 2 and therefore |F1|+ |F2|+ |F3| = m+ 2.

We now let a equal the number of 1’s in F1, b equal the number of 1’s in F2, c equal the

number of 1’s in F3, d equal the number of 2’s in F3 and e equal the number of 3’s in

F3. We are assuming that F2 contains a 2, so that F3 cannot contain a 4. Then, because

|F1|+ |F2|+ |F3| = m+ 2, we have

a+
m− a

2
+ 1 + b+

m− 2− b
3

+ c+ d+ e+
m− c− 2d− 3e

6
= m+ 2

Rearranging yields

a

2
+

1

3
+

2b

3
+

5c+ 4d+ 3e

6
= 2

and then clearing denominators yields

3a+ 4b+ 5c+ 4d+ 3e = 10

There are 7 solutions for (a, b, c, d, e): (0, 0, 2, 0, 0), (2, 1, 0, 0, 0), (1, 1, 0, 0, 1), (0, 1, 0, 0, 2),

(2, 0, 0, 1, 0), (1, 0, 0, 1, 1), and (0, 0, 0, 1, 2). It is easy to verify that all 7 possibilities

contradict 2n ≥
∑r

i=1

∑
b∈Gi

∑
a∈Fi

(
b − (b, a)

)
. For instance, consider (a, b, c, d, e) =

(0, 0, 2, 0, 0): since F2 contains a 2 and F3 contains two 1’s,

r∑
i=1

∑
b∈Gi

∑
a∈Fi

(
b− (b, a)

)
≥ (3− (3, 2))

3

(
n− 12− 4n

f2,3

)
+

2(6− (6, 1))

6

(
n− 60− 4n

f3,6

)
whence

2n ≥ 2

3

(
n− 12− 4n

f2,3

)
+

5

3

(
n− 60− 4n

f3,6

)
or n

3
≤ 72 + 4n( 1

f2,3
+ 1

f3,6
), a contradiction since n ≥ 4m > 600. The other 6 cases result

in a similar contradiction, and therefore when n ≥ 4m, we reach a contradiction.

This concludes our proof of the f1,2 > 4, f2,3 > 4, f3,6 > 4 case when n ≥ 4m. When we

remove the restriction that n ≥ 4m, the argument remains similar. The only difference

is that there are many more cases to analyze, for which we simply write a computer

program to run through all possible cases. The program eliminates many possibilities

with two key lemmas from Section 2, namely Lemmas 2.8 and 2.9; the program then

confirms that all possibilities result in
∑r

i=1

∑
b∈Gi

∑
a∈Fi

(
b − (b, a)

)
being larger than

2n, and thus shows that the D = [2, 3, 6] case cannot actually occur.

The conclusion of the D = [2, 3, 6] case concludes our proof of the third subcase. �

Proof of Fourth Subcase. The fourth and final subcase is when exactly two of the three

points satisfies fi,2 > 4. We let F1 and F2 be these two points, and we observe that by
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Proposition 3.8, |F1|, |F2| ≥ m−12
2

+ 1 = m
2
− 5. By (2.5),

2m− 2 =
r∑
i=1

(m− |Fi|) =
∑
1≤i≤3

(m− |Fi|) +
r∑
i=4

(m− |Fi|)

But recall that
∑r

i=4 (m− |Fi|) ≤ 2 and hence

2m− 2 ≤
∑
1≤i≤3

(m− |Fi|) + 2 = 3m− |F1| − |F2| − |F3|+ 2

But since |F1|, |F2| ≥ m
2
− 5 this implies that

|F3| ≤ m+ 4− |F1| − |F2| ≤ 2m+ 4− (m− 10) = 14

Hence |F3| is extremely small and so this case loosely corresponds to D = [2, 2,∞]. In

particular, it is impossible for fi,k > 4 for 3 ≤ k ≤ 6. The proof of this case is far more

difficult than the proof of the other three subcases, primarily because the small size of

F3 makes it hard to control F3. We now present an extensive outline of the proof.

We first recall that |F3| ≤ m+ 4−|F1|− |F2|; we therefore attempt to bound |F3| from

above by bounding |F1| and |F2| from below. To do this, we must utilize our knowledge

of F1 and F2, and specifically the fact that f1,2, f2,2 > 4. This implies by (3.6) that

g1,2, g2,2 ≥ n−4
2
− 2n

m−12
2

= n−4
2
− 4n

m−12 . Now observe that the presence of any number

larger than 2 in either F1 or F2 will cause
∑r

i=1

∑
a∈Fi

∑
b∈Gi

(
a − (a, b)

)
to increase

tremendously. Indeed, if a > 2 and b = 2, then a − (a, b) ≥ max(a − 2, 2) and hence∑r
i=1

∑
a∈Fi

∑
b∈Gi

(
a − (a, b)

)
will increase by at least max(a − 2, 2)

(
n−4
2
− 4n

m−12

)
. But

this quantity is at least roughly n, and since 2m ≥
∑r

i=1

∑
a∈Fi

∑
b∈Gi

(
a − (a, b)

)
, we

can easily establish an upper bound on the number of numbers in F1 ∪F2 that are larger

than 2. Moreover, since max(a− 2, 2)
(
n−4
2
− 4n

m−12

)
increases as a increases, we can also

establish an upper bound on the sum of all numbers in F1∪F2 that are larger than 2. We

therefore possess stringent upper bounds on
∑

i≥3 f2,i and
∑

i≥3 i · f2,i and
∑

i≥3 f3,i and∑
i≥3 i · f3,i. By similar logic in the opposite direction, we establish strict upper bounds

on
∑

i≥3 g2,i and
∑

i≥3 i · g2,i and
∑

i≥3 g3,i and
∑

i≥3 i · g3,i.
Equipped with these bounds on the larger elements of F1∪F2 and G1∪G2, we achieve

lower bounds on |F1|, |F2|, |G1| and |G2|. We therefore arrive at strong upper bounds on

|F3| and |G3|. These bounds are sufficiently strong that there are very few possibilities

for F3 and G3, and so we write a computer program to generate all of these possibilities.

For each potential pair (F3, G3), the program generates all possible (F1, F2, G1, G2). The

program then uses these 6 multisets to demonstrate that F4, F5, . . . and G4, G5, . . . must

all be equivalent to [1m] and [1n], respectively. Finally, the program demonstrates that
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either F1 ∪ F2 or G1 ∪ G2 must consist of entirely 1’s and 2’s, whence either (2.3.1) or

(2.3.2) holds. This concludes our outline of the proof of this fourth and final subcase.

�

The resolution of these four subcases proves Theorem 2.3 in the case that exactly 3 i’s

satisfy fi,1 > 4. We have therefore proved Theorem 2.3 in this section under the hypothesis

that 42m ≥ n ≥ m > 150. In the next section, we reinterpret and refine our results, and

clarify their importance. �

4. Refinements of Our Results

In this section we refine our main results by giving a more precise description of the

rational functions f and g satisfying the hypotheses of those results.

More precisely, if f and g satisfy the hypotheses of any of Theorems 1.3, 1.6 or 2.3, then

we will show that one of the following occurs, up to changing variables:

(4.0.1) At least one of f or g is on a short list of simple functions (such as Xm), and the

other is almost completely determined.

(4.0.2) Both f and g both have degree ≤ 80, and are on an explicit finite (but long) list.

As was noted following Theorem 1.3, conditions (1.3.1) and (1.6.1) imply that at least one

of f or g is on a short list of simple functions. One such case is f = Xm; here we determine

the corresponding functions g in case m > 6, by showing that (up to changing variables)

g(X) = Xah(X)m for some integer a coprime to m and some h ∈ C(X).

Proof. By (2.7) we have

2∑
i=1

∑
b∈Gi

(
m− (m, b)

)
∈ {2m− 2, 2m}.

Let D be the multiset of values m
(m,b)

where b ∈ G1 ∪ G2 and m - b so that D is a finite

multiset of integers greater than 1 and
∑

d∈D
(
1 − 1

d

)
≤ 2. By Lemma 3.3, either |D| ≤ 2

or D is one of [24], [33], [2, 42], [22, k] with k > 1, or [2, 3, `] with 2 ≤ ` ≤ 6. By (2.9.1),

gcd(F1 ∪ F2 ∪ G1 ∪ G2) = 1, or gcd(m,G1 ∪ G2) = 1. Hence the least common multiple of

the elements of D must be m, so (since m > 6) either |D| ≤ 2 or D = [22, k]. If D = [22, k],

at least one of G1 and G2 (say G1) consists of elements divisible by m
2

, so m
2

divides the

sum of the elements in G1, which is n. Hence m
2

also divides the sum of the elements in

G2; since m
2

divides all but at most one element of G2, it must divide all elements of G2,

so m
2
| m
k

and thus k | 2, contrary to the condition lcm(D) = m. Thus |D| ≤ 2, so since∑
d∈D
(
m − m

d

)
≥ 2m − 2 we must have D = [m2]. By replacing f and g by f ◦ ν1 and

g ◦ ν2 for some degree-one νi ∈ C(X), we may assume that f(0) = Q1, f(∞) = Q2, and that
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the two points P in g−1({Q1, Q2}) for which m - eg(P ) are 0 and ∞. By replacing f and g

by µ ◦ f and µ ◦ g for some degree-one µ ∈ C(X), we may assume that Q1 = 0, Q2 = ∞,

and the numerator and denominator of f have the same leading coefficient. It follows that

f(X) = Xm and g(X) = Xah(X)m for some a coprime to m and some h ∈ C(X). �

If f and g both have degree ≤ 80, then our proof of Theorem 2.3 produces an explicit

(but long) list of possibilities for the ramification types of f and g. In order to determine

which of these ramification types actually correspond to rational functions f and g for which

the numerator of f(X)− g(Y ) is irreducible, we used the following result of Hurwitz, which

reduces the question to a problem about tuples of elements in a certain finite symmetric

group:

Theorem 4.1 (Hurwitz). For any positive integer m, any multisets A1, . . . , Ar consisting of

positive integers, and any distinct Q1, . . . , Qr ∈ C ∪ {∞}, the following are equivalent:

(4.1.1) there exists a degree-m rational function f(X) ∈ C(X) such that Ef (Qi) = Ai and

Ef (Q) = [1m] for each Q /∈ {Q1, . . . , Qr}
(4.1.2) all three of the following hold:

•
∑

a∈Ai
a = m for each i with 1 ≤ i ≤ r

•
∑r

i=1(m− |Ai|) = 2m− 2

• there are elements g1, . . . , gr ∈ Sm such that the multiset of cycle lengths of gi

is Ai, the product g1g2 . . . gr is the identity permutation, and the subgroup of Sm

generated by g1, . . . , gr is transitive.

Theorem 4.1 can be combined with (2.7) and Fried’s reducibility theorem [15] in order

to give a similar characterization of the ramification types of pairs of rational functions

(f, g) for which the numerator of f(X) − g(Y ) defines an irreducible curve of genus 0 or

1. Moreover, a refinement of Theorem 4.1 describes the number of functions f satisfying

(4.1.1), up to a change of variables. In each case we used various computational methods to

produce the required number of rational functions having the prescribed ramification type,

thereby determining all low-degree functions satisfying the hypotheses of Theorem 1.3.

Here is one example of rational functions having a prescribed ramification type: one

possibility is that the Fi’s are [1, 3], [22], [12, 2], [12, 2], and that Fi = Gi for each i. In this

case the corresponding rational functions are as follows, up to changing variables. For any

complex number t such that t2 6= 0, 1, 3,−3, 9 and t2−6t+3 6= 0, we define u := −1
6
· t2+3
t2−3 and

v :=
1
3
t2+1

t2+6t−3 . We then define f :=
(X2+X+3+u2− 1

12)
2

X
and g := −1

8
· (t

2+6t−3)
3

(t2−3)3 ·
(X2+X+3+v2− 1

12)
2

X
.

It turns out that f(X)−g(Y ) is irreducible of genus 0, and that there exist f̂ and ĝ for which
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f ◦ f̂ = g ◦ ĝ. We computed explicit expressions for all such f̂ and ĝ; they are considerably

more complicated than the expressions for f and g.

5. A Dynamical Application

In this section, we present an application of our results. Cahn, Jones, and Spear [9]

conjectured that for f, g ∈ Q(X) with degree at least 2 and c ∈ Q, the set A := {n ∈
N : gn(c) ∈ f(Q)} must be the union of finitely many numbers and finitely many one-sided

arithmetic progressions, where gn(X) denotes the n-th iterate of g(X). This conjecture was

recently proven by Hyde and Zieve. Using our results, we can refine the result to show

that each arithmetic progression has common difference and smallest element being at most

4 + (deg f)2. This application is especially interesting since it involves no irreducibility

hypothesis. Due to space constraints, we only sketch the proof.

Sketch of Proof. We may assume that A is infinite, so that for each n the equation f(X) =

gn(Y ) has infinitely many rational solutions, and hence (by Faltings’ theorem) the numerator

of f(X)−gn(Y ) has an irreducible factor in C[X, Y ] which has rational coefficients and defines

a curve of genus 0 or 1. Choose such factors Hn(X, Y ) such that Hn+1(X, Y ) divides the

numerator of Hn(X, g(Y )) for every n. For simplicity we assume that Hn(X, Y ) = 0 has

genus 0 for every n, so that its zeroes can be parametrized as (X, Y ) = (an(t), bn(t)) for some

an, bn ∈ Q(X), whence the equation bn(X) = gm(Y ) has infinitely many rational solutions

for all n,m ∈ N.

Crucially deg(bn+m) ≤ deg(bn), with equality holding precisely when bn(X) − gm(Y ) is

irreducible. By our results, if bn(X)−gm(Y ) is irreducible then we obtain strong constraints

on bn and gm. If this irreducibility happened for several consecutive values of m, then

we can combine the constraints on bn and gm in order to show (using Fried’s reducibility

theorem [15]) that bn(X) − gm(Y ) would be irreducible for every m. It follows that if

deg(bn+m) < deg(bn) for some m then this must occur for some small m, which via a short

argument implies that the smallest element of each arithmetic progression is small. Similar

arguments bound the common difference of each arithmetic progression, and yield the result

when some Hn(X, Y ) = 0 has genus 1. �

6. Conclusion

In this paper, we use combinatorial and algebraic methods to prove a geometric result,

Theorem 2.3, that describes the ramification of large-degree complex rational functions f and

g for which the numerator of f(X)− g(Y ) defines an irreducible curve of genus 0 or 1. We

deduce two consequences: the number theoretic Theorem 1.3 addressing rational functions
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f, g ∈ Q(X) for which f(Q) ∩ g(Q) is infinite, and the analytic Theorem 1.6 regarding the

functional equation f ◦ f̂ = g ◦ ĝ with f, g ∈ C(X) and f̂ , ĝ meromorphic on C. The results

illustrate that the rational functions satisfying any of these conditions are unexpectedly nice:

it must be the case that either the Galois closure of C(X)/C(f(X)) has genus 0 or 1 (in

which case all corresponding functions are understood), or the analogous condition holds for

g, or that there is a change of variables turning the equation f(X) = g(Y ) into the special

equation Xc(X − 1)d = γY c(Y − 1)d, or that the ramification types of f and g are confined

to an explicit list. Our results resolve a 1973 question of Fried, and (under an irreducibility

hypothesis) resolve a 1924 question of Ritt and a 1997 question of Lyubich and Minsky.

In addition, we obtain a quantitative refinement of a 2015 conjecture by Cahn, Jones and

Spear.

In the future, we will attempt to remove the irreducibility hypothesis from our main

results. As was illustrated in Section 5, the irreducible case can often serve as the base case

for an inductive approach to tackle the reducible case. We hope to achieve a result in the

reducible case by such an inductive approach, combining the reducibility result from [15]

with refinements of the group-theoretic results in [1, 17,20,22,26].
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