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Abstract

The advent of Next Generation Sequencing (NGS) technologies has re-

sulted in a barrage of genomic data that is now available to the scientific com-

munity. This data contains information that is driving fields such as precision

medicine and pharmacogenomics, where clinicians use a patient’s genetics in

order to develop custom treatments. However, genomic data is immense in

size, which makes it extremely costly to store, transport and process. A ge-

nomic compression system which takes advantage of intrinsic biological pat-

terns can help reduce the costs associated with this data while also identifying

important biological patterns. In this project, we aim to create a compression

system which uses unsupervised neural networks to compress genomic data.

The complete compression suite, GenComp, is compared to existing genomic

data compression methods. The results are then analyzed to discover new bi-

ological features of genomic data. Testing showed that GenComp achieves at

least 40 times more compression than existing variant compression solutions,

while providing comparable decoding times in most applications. GenComp

also provides some insight into genetic patterns, which has significant poten-

tial to aid in the fields of pharmacogenomics and precision medicine. Our re-

sults demonstrate that neural networks can be used to significantly compress

genomic data while also assisting in better understanding genetic biology.



INTRODUCTION

A. Problems with Next Generation Sequencing

and Storage of Genomic Data

Genomic data is crucial to understanding how

humans function, and for developing explana-

tions to the way life works. Recent advances in

Next Generation Sequencing (NGS) technologies

are providing researchers with an ever increasing

amount of genomic data. However, the genomic

community has been unable to make the most of

these developments due to the lack of effective

methods of storing, transporting and processing

genomic data [77]. Raw genomic data is mas-

sive, and currently genomic data is stored in a

manner which takes advantage of the large re-

dundancy found between genomes [20]. Newly

sequenced genomes are optimally aligned to a

reference genome, and then stored in two parts: A

sequence alignment map which details this optimal

alignment and a variant call file which stores all

the variations between the new genome and the

reference genome. While significantly smaller than

raw data, the resulting files may still be hundreds

of gigabytes in size for just one person [19]. A

current file of this size can take multiple hours

to transport and process while also costing a lot

of money to store, significantly inconveniencing

doctors and hospital patients who require genomic

data [10]. Thus, it is vital to develop a system

that can effectively compress genomic data from a

medical informatics standpoint. From a biological

viewpoint, using biological patterns to compress

genomic data could also lend insight into the

fundamental structure of DNA and life.

B. Compressive Genomics

The characteristic large size of genomic data

has necessitated the development of compression

algorithms that can significantly reduce the re-

sources needed for storage and processing. The

intrinsic biological patterns found in genomic data

provide a unique opportunity for compression, and

there have been a slew of successful algorithms

that have been developed in the recent future.

However, users who deal with genomic data do

not necessarily benefit the most from the algorithm

that achieves the highest compression ratio. For

example, take lossy compression, which does not

produce an identical reconstruction of the origi-

nal data after decoding. Such reconstructions are

substandard for genomes: for instance, sickle-cell

anaemia, a severe genetic disease, can result from a

single incorrect nucleotide in DNA (an A to T sub-

stitution in position 6 of the β -globin gene) [66].

Compression systems which provide completely
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lossless compression are, therefore, critical in ge-

nomic applications. Computation time is also an

important consideration in the design of genomic

compression systems. Genomic sequence analysis

pipelines often take many days to complete, and

adding a few hours to a sequence analysis pipeline

to produce much smaller files is a very reasonable

request for genomic data end users. However, once

the files arrive at the destination, quick and easy

decoding is important since time is of the essence

when patient treatment options are being evaluated.

Finally, the ability to maintain indexing is consid-

ered a very valuable property of genomic compres-

sion systems. A system which maintains indexing

allows users to decompress specific portions of

the encoded file and obtain needed segments of

the original data without decompressing the entire

file. This is especially useful for genomes, as most

important genetic variations are tied to specific po-

sitions, which can be accessed, as needed, without

taking the time to decompress an entire file of

variant calls.

C. Existing Work

1) Quality Score Reduction at Terabyte Scale

(QUARTZ): Quality information is information

regarding the accuracy of each individual base

sequenced by an NGS machine. This information

takes up a large amount of space in raw genomic

data, thus greatly hindering the performance of

sequence analysis pipelines. The Quality Score

Reduction at Terabyte Scale, or QUARTZ system,

is a novel method for effectively compressing

quality information while increasing its accuracy.

QUARTZ uses common recurring subsequences

found in reads to lossily compress quality informa-

tion. While this does mean that the original qual-

ity information cannot be reconstructed, testing

showed that the imperfect decoded quality infor-

mation proved to be more accurate than the orig-

inal scores [77]. However, QUARTZ only works

with quality score information in raw NGS output,

and cannot be applied to quality information with

variant calls.

2) Compressive Read Mapping Accelerator

(CORA): The most computationally intensive por-

tion of a sequence analysis pipeline in NGS sys-

tems is the alignment of raw genomic data to

the reference genome. While current read map-

pers take advantage of redundancies found in

the reference genome to speed up sequencing,

they do not utilize redundancies within the raw

genomic data itself. Compressive Read Mapping

Accelerator (CORA) is a tool designed to be

used on top of existing read mapping systems to

boost their performance. It speeds up alignment by
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using redundancies within raw genomic datasets.

CORA’s performance scales sub-linearly due to its

operation solely on the nonredundant information

found in raw genomic data [7]. While CORA

effectively reduces the time it takes to generate

alignment maps, it does not actually compress this

data.

Both systems detailed above are very effective

but also extremely specialized. They reduce the

storage or computational resources needed for a

specific type of genomic information or a particu-

lar step in a sequence analysis pipeline. However,

neither system provides insight into the biological

features of genomic data as well.

3) Neural Networks and Autoencoders: Neural

networks are at the center of innovation and de-

velopment in machine learning and deep learning.

Increases in computational power have led to the

development of extremely complex deep networks

which can function similarly to the human brain

by using input from various data to make decisions

and predictions. Certain types of neural networks

have also been proven to be excellent at finding

complex nonlinear patterns in data. An example

of one such network type is the autoencoder. The

goal of an autoencoder is to reproduce the data

from the input layer in the output layer using

the hidden layer representation of the data [37].

If an autoencoder with a hidden layer smaller

than the input and output layer is trained, it can

potentially learn a lower dimensional represen-

tation of the data. Oftentimes autoencoders are

restricted so that only a small percent of the

neurons in an autoencoder can be activated for any

given input. Autoencoders which utilize this con-

straint, known as sparse autoencoders, are forced

to learn a much more robust representation of the

data [57]. Autoencoders are often used to develop

improved feature representations of a dataset for

use in deep networks which perform supervised

tasks such as classification or prediction. However,

undercomplete sparse autoencoders could also be

very useful in compressing genomic data. They

could potentially compress genomic data by ex-

ploiting genomic data’s characteristic biological

patterns [72]. An autoencoder based compression

system could possibly compress numerous types

of genomic data while also providing insight into

the biological patterns found in this data.

D. Purpose

The purpose of this research is to develop a

genomic compression system for sequence align-

ment and variant data which will also provide

insight into the intrinsic biological patterns which

define genetics.The goal of the system is to pro-
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duce significantly better compression than existing

methods through the use of neural networks which

automatically identify patterns in the data. We

evaluate the compression our system achieves by

comparing it to generic text compression algo-

rithms which are currently being used with this

data. We then analyze our system with the goal

of better understanding the underlying features in

genomic alignment and variant data.

I. METHODS

In this section we detail how GenComp uses

neural networks to compress sequence and position

information found in genomic variant calls and se-

quence alignments. We highlight how GenComp’s

architecture enables it to provide a unique set of

desirable capabilities to users in genomic applica-

tions. We also describe implementation details and

explain how GenComp’s compression is evaluated

and compared to existing methods.

A. Languages Used

GenComp’s encoding algorithm can be broken

up into three different steps. The first of these steps

involves processing variant and alignment data,

which are found in Variant Call Format (VCF) and

Binary Alignment Map (BAM) files respectively.

This step is implemented in Java. The remaining

two steps, which involve training autoencoders for

compression and creating the compressed data,

are implemented in MATLAB using the Neural

Network Toolbox. Finally, the decoding performed

by GenComp has been implemented in Java as

well. MATLAB was chosen for the simplicity of

its autoencoder library, while Java is used mainly

due to personal preference and its simplicity when

it comes to file read-write operations.

B. Preprocessing

The first step in GenComp’s pipeline is the

processing of input data prior to compression using

autoencoder networks. A large portion of VCF and

BAM files are composed of metadata, including

details regarding the origin of the data and in-

formation about the individual being sequenced.

This data is stored in the form of comments in the

original file, and account for up to 90% of the size

of original variant files. If quality information is

constant throughout a file (which it sometimes is),

GenComp will concatenate it to other information

which is being compressed and compress it as well.

However in most cases quality score information

is not compressed, and we only seek to compress

base sequences and position information. There-

fore, the first step of the data processing for variant

data involves discarding all of the metadata and
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only retaining the sequence, position and quality

information. Alignment data (BAM) files generally

contain 10 pieces of information: a sequence dic-

tionary, a list of reference genomes, the alignment

start values, the mapping quality values, flags, the

mate positions, the quality values, the sequences,

and the headers. However only the base sequence

and position information are compressed, just like

with the variant information.

The components highlighted above require addi-

tional processing in order to produce feature sets

which can then be used to train an autoencoder.

In variant data, the sequence of bases which com-

poses the variants is not numerical in nature. As

a result it is necessary to represent the data in

the form of a numeric sequence. This is done

using the Wernberg transformation, where the each

of the 4 bases, Adenine, Cytosine, Thymine, and

Guanine, are mapped to the digits 1,2,3 and 4,

respectively. Initially, all Insertions and Deletions,

or Indels, are mapped to 0. Therefore, this first

sequence only stores Single Nucleotide Polymor-

phisms, or SNPs. The bases that compose each

Indel are then stored separately using the same

transformation detailed above. The completion of

one Indel and the beginning of the next is marked

by a 0. Finally, commas, which sometimes appear

to represent segregating alleles, are represented

by a 5. Through this process sequence data is

split into two major components, a sequence of

SNP data and a sequence of Indel data. The next

major component in both variant and alignment

data is the position data, which stores the genomic

location of variants or reads, which are the short

sequences stored in alignment maps. Even though

this data is numerical, it is an ascending sequence

of numbers which can get extremely large, and

such a sequence does not lend itself well to

compression since there is no repetition of any

form. To overcome this, GenComp simply stores

the first position absolutely, and the remaining data

is stored as a sequence of gaps, where each gap

is equivalent to the difference between the current

position and the previous position. This allows for

gaps to repeat and form a pattern which can be

identified by the autoencoders.

C. Autoencoder Architecture

A simple three layer autoencoder structure is

used for all compression. The sigmoid transfer

function and scaled conjugate gradient descent

optimization algorithm are used for all autoen-

coders. The sparsity proportion of 0.05 is also

kept constant for all autoencoders, and all training

inputs are in the form of a k by 10 feature matrix.

Prior to training the data is rescaled to the range
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of [0,1], the range of the sigmoid transfer func-

tion. Finally, a static random seed is used during

weight initialization to prevent non-deterministic

training behavior. Variant data is compressed using

two slightly different autoencoder structures. These

structures vary in input layer size, hidden layer

size, and number of training iterations. The first is

used for all base sequence data, including both the

SNP and Indel Sequences. This autoencoder uses

an input layer of 8000 and a hidden layer of 40,

which is 200 times smaller than the input. 1500

training iterations are provided for SNP sequence

data and 4500 iterations are provided for Indel

sequence data. The second autoencoder structure,

which is used with gap sequences, has an input

layer of 4000 and a hidden layer of 80 (50 times

smaller than the input). 15000 iterations are pro-

vided for training. For inputs larger than 4000 or

8000 in size, the input matrices are broken down

into segments of this size prior to compression.

Each segment is then trained using a separate

autoencoder. This is done primarily to preserve

indexing during decoding. Encoding each segment

individually allows users to decode segments inde-

pendently of each other. When a user wants only

a few lines of data found in a really large encoded

file, they do not need to decode the complete

file with GenComp, and instead can decode the

segment that contains their target data.

The compression architecture for BAM files is

virtually the same as for VCF files, and the only

difference is in the input fiel type. The input layer

used has a size of 10000, while the hidden layer

has a size of 80.

GenComp’s asymmetric encoding-decoding

times can be attributed to the autoencoder’s role

in compressing the data. Encoding data involves

training multiple autoencoders, which can take a

significant amount of time. However, decoding of

data is very quick since no training is needed. The

data must be simply input into the trained network

and the hidden layer representation is extracted.

Through this asymmetric encoding-decoding

scheme, GenComp trades off longer encoding

times for greatly improved compression and

shorter decoding times.

D. Post-Processing

After the autoencoders have been trained, Gen-

Comp makes a few modifications to further op-

timize compression and preserve accuracy in the

system. This crucial post processing step ensures

that perfect decoding is possible while also mini-

mizing the size of the compressed representation.

The first step of post-processing involves reducing

the size of the encoded data by simplifying it.
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Fig. 1.1. Autoencoder Architectures for Base Sequences and Gap Sequences. This figure displays the two different autoencoder structures

used for variant data. The picture on the right shows the autoencoder used for Base Sequence compression. The input and output layers

have size 8000 while the hidden layer size of 40 provides 200 times compression. The picture on the right shows the autoencoder used

for Gap Sequence compression. The input and output layers are 4000 while the hidden layer provides 50 times compression with a size

of 80.

We found that most of the encoded data being

produced by the autoencoders are binary in nature.

The majority of the data in the encoded matrices is

in fact very close to either 0 or 1. However, these

numbers, usually within 10−5 of 0 or 1, require

a lot of storage space to maintain precision. By

simplifying these matrices such that data within a

specific threshold is rounded to 0 or 1, GenComp

is able to halve the file size of the encoded data

while maintaining most of the accuracy developed

during training. This step is crucial to increasing

compression ratio, but it also helps to simplify

pattern identification in the encoded data, which

is explained in a higher level of detail in the

discussion.

Usage of an autoencoder for data compression

does have a major downside, especially in a ge-

nomic application. While the goal of an autoen-

coder network is to minimize reconstruction error,

or the difference between the decoded data and

the input, it rarely achieves a reconstruction error

of 0. As a result, autoencoders usually perform

lossy compression of the data. In genomics and

precision medicine, even a single incorrect variant

call can lead to incorrect analyses in important

situations. GenComp maintains lossless compres-

sion, or compression where perfect reconstruction

is possible, even though it utilizes the lossy autoen-

coder algorithm. This is accomplished by storing

the reconstruction difference (δ ) after training the

autoencoder. This δ is calculated by first sim-

plifying the encoded data as detailed above, and

then decoding the simplified representation and

comparing the decoded version to the original.

The δ is then stored in a matrix which details

the locations and values of the differences. During

decoding, the autoencoder is used to produce a

lossy reconstruction, and then the δ is added in

to produce a perfect copy of the original data.
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Fig. 1.2. Flowchart of GenComp’s Compression Pipeline for Vari-

ant Data. This flowchart provides a graphical representation of the

compression process detailed above. First, the Variant Data is split

into its two main components, the base sequence and gap sequence.

The base sequence is further split into two sub-components, the

SNP Sequence and Indel Sequence. All of these components are

compressed using autoencoders, and the compressed components

along with their respective δ terms are stored in conjunction to

form the compressed VCF file.

E. Decoding

Decoding in GenComp is a very simple process

which involves three steps. First, the encoded data

is decoded using its corresponding autoencoder.

Then, the term is added back into the decoded

version to produce a perfectly reconstructed nu-

merical input. Finally, the processing completed

in the Pre-processing step is then performed in a

reverse order to reproduce the original data.

F. Testing and Evaluation

All of the variant and sequence alignment data

used for testing was obtained from the 1000

Genomes Project. The variant and alignment files

used were both from Phase 3 of the project. Each

file contained variants of 2504 individuals, and as a

result these files were extremely large and required

more memory than we had available for processing

and compression. To make testing simpler, we

split these files into smaller sub-files, each ranging

between 200000 and 1000000 lines in size. These

files were then used as testing data for GenComp.

Laptops were used for testing with both variant

and alignment data. For variant data the primary

laptop used was a Dell Inspiron 5558 Signature

Edition Laptop, with a dual core Intel i5-4210

CPU running at 1.70 gHz, 8 GB of RAM, and 1

TB hard drive running Windows 10. The laptop

used for testing with alignment data was a HP

Pavilion Gaming Notebook with a quad core Intel

i7-6700HQ CPU running at 2.60 gHz, 16 GB of

RAM, and 1 TB SSD running Windows 10.

A few different performance metrics were used

to evaluate GenComp’s performance with variant

and alignment data. The first of these is compres-

sion ratio. The compressed variant and alignment

files were stored in the CSV format, and the size

of these files was compared against the original

data. First the compressed files were compared

to the autoencoder inputs. These compressed files

were the lossy version of the data. Then the

compressed files were stored along with the δ term

and were compared to the feature matrices. Finally
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the compressed files and δ term were compared

against the original VCF files. This analysis was

done for each of the three components: SNP se-

quences, Indel sequences, and Gap sequences.The

final comparison to the original VCF files was only

done with all three components combined. This

final metric was then compared to the compressed

VCF files generated by zip and gzip. as these are

currently the most commonly used compression

algorithms for variant data. The compression ratios

and decoding times were also compared.

II. RESULTS AND DISCUSSION

In this section we examine GenComp’s com-

pression ratios and provide potential explanations

for its performance on each of the individual

components of variant data. We then compare

GenComp’s performance to existing compression

methods and discuss the viability of the tradeoff

GenComp makes between performance times and

compression ratio. Finally we analyze the results

produced by GenComp and explain the biological

significance of these results.

A. Compression

GenComp’s compression ratio, encoding times,

and decoding times were evaluated and compared

to other current compression methods used with

genomic variant and alignment data to determine

the feasibility of using GenComp for genomic

compression.

1) Compression Ratio: As Table II.1 displays,

GenComp had varying degrees of success in com-

pressing the different components of variant data.

It was most successful with SNP sequences, where

it was able to achieve a compression ratio of

greater than 170. GenComp was not as successful

with Indel sequences where it only achieved a

compression ratio of around 37. Finally, GenComp

had decent performance with the Gap sequences

and averaged more than 100 times compression.

Overall when compared to the CSV forms of all

the data, GenComp achieved a little more than

115 times compression. However it is also fair

to compare GenComp to the original VCF files

since the original VCF files can be reproduced

directly from the encoded data as well. GenComp

was able to achieve an overall compression ratio of

around 209 for the 75 VCF segments compressed.

This breakdown suggests that SNP sequences in

genomic variant data have more redundant intrinsic

patterns than Indel or Gap sequences. The high

compression of SNP sequences was the main con-

tributing factor to the high overall compression

ratio achieved by GenComp.

GenComp outperformed existing compression
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Avg. original size Avg. Lossy Compressed Segment Size Avg. Lossless Compressed Size (with δ ) Avg.Compression Ratio

SNPs (CSV) 191.28 kb 0.95 kb 1.10 kb 173.89

Indels (CSV) 24.64 kb 0.11 kb 0.67 kb 36.78

Gaps (CSV) 144.11 kb 1.04 kb 1.32 kb 109.17

Total (CSV) 359.81 kb 2.10 kb 3.09 kb 116.44

Total (VCF) 646.58 kb 2.10 kb 3.09 kb 209.25

TABLE II.1

BREAKDOWN OF GENCOMP’S VARIANT COMPRESSION. This table displays the average original file sizes, compressed file sizes and

compression ratio that GenComp achieved for SNP sequences, Indel sequences, and Gap (Position) sequences. The averages are

calculated using 75 segments of data where each segment contains 40000 lines of a VCF file.

Fig. 2.1. This chart shows the average file sizes produced by zip

compression, gzip compression and GenComp for the 75 segments

that were tested.

methods used with variant data by a huge margin.

GenComp actually achieved a compressed file size

over 40 times smaller than the files produced by

zip and gzip compression. The compressed variant

files for all 75 segments also had a standard devia-

tion of 1.122 kb along with their mean of 3.09 kb.

We can use this information to create a 99.9% con-

fidence interval for the mean compressed segment

size for all variant data files. This t interval has a

margin of error of 0.44 kb, so we can state that

we are 99.9% confident that the mean compressed

size of a variant segment is in the range of 2.64 to

3.53 kb. This interval demonstrates that GenComp

should achieve anywhere from 35.97 times to

46.73 times more compression of variant data than

zip or gzip compression in almost all cases.

2) Alignment Map Compression: Alignment

map compression yielded files that were over 100

times smaller than the original sequence alignment

maps. However, we could not find an adequate

method that would let us compare our compressed

files with binary alignment map files. The reason

for this is that GenComp does not compress all

components found in alignment map files, and

only sequence and position data were compressed.

However, most information stored in the alignment

maps is small, often containing just a single entry

in an entire file. Thus, by our estimates, GenComp

should be able to compress BAM files by at least
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a factor of ten.

3) Encoding Time: On average, GenComp takes

355 seconds to compress one SNP segment, 34

seconds to compress one Indel Segment, and 1770

seconds to compress one Gap segment. It also

takes about 1600 seconds to compress one align-

ment map segment. However, it is extremely im-

portant to note that all testing was completed on a

personal laptop with a dual core Intel i5 processor

and no GPU. Since the majority of GenComp’s

encoding process involves training autoencoder

networks, which is very computationally intensive,

running GenComp on large datasets is not feasible

on personal laptops. We are currently optimizing

GenComp for parallelization and will be launching

Amazon Web Services Instances with at least 32

cores to run GenComp tests in the near future. We

also will be testing with GPU clusters to see if

that further boosts performance. We expect that

our encoding time performance should improve by

at least a factor of 16 when GenComp is run on

these clusters. This is based on the observation that

the few tests that were run with GenComp using

an NVIDIA GTX 970m GPU halved the encod-

ing time without any parallelization, so running

with multiple GPUs or cores and parallelization

should provide far superior improvements. Run-

ning GenComp’s encoding on computing clusters

will provide a much more accurate measure of its

performance because we will be able to see how

it scales to larger datasets that are actually used in

sequence analysis pipelines.

4) Decoding Time: Unlike encoding, decoding

is not extremely computationally intensive, and

resultingly we believe that our decoding times do

provide a realistic estimate of GenComp’s perfor-

mance in genomic applications. Our tests show a

mean decoding time of around 710 milliseconds

for a single variant segment, and roughly 1800

milliseconds for each alignment map segment.

Gzip and Zip decoding took only 61 milliseconds

on average to decode a single variant segment.

So, GenComp is significantly slower at decoding

data compared to zip, taking almost 12 times as

long to decode. However, GenComp’s ability to

preserve indexing unlike zip and gzip allow it to

decode faster than those systems in many cases.

For example, if a user in a genomic application

seeks to extract a segment of data smaller than one

twelfth of the original file in size, GenComp will

provide superior performance over zip and gzip.

So, while these methods are considerably faster

at decoding than GenComp, GenComp will still

outperform them in many practical applications

where only small portions of large data files need

to be decoded.
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Fig. 2.2. This figure is a side by side comparison of an original

SNP segment along with its compressed representation. The figure

on the left is the original sequence and the figure on the right is

the compressed representation formed by GenComp.

B. Biological Analysis

1) Analysis of Compressed Variant Data: Gen-

Comp was able to compress variant data extremely

effectively due to a surprising amount of patterns

found by the autoencoder networks in the data,

especially in SNP data. Here we further analyze the

compressed representations of the SNP sequences

and note some interesting patterns found in the

compressed versions while also discussing the po-

tential nature of these patterns.

The final step in GenComp’s compression

pipeline prior to the calculation of the term is

the simplification of the encoded data. This step

involves iterating through the compressed matrix

and rounding all entries within 10−5 of 0 to 0

while rounding all entries within 10−3 of 1 to 1.

This simplification results in a compressed repre-

sentation matrix which is mainly stored in a binary

form. Below is a comparison between an original

SNP data segment and its compressed form. As

can be seen in Fig. 2.2, the image is mostly made

up of dark blue and yellow pixels, where dark blue

represents a 0, while yellow represents a 1. All of

the colors that are in between, including various

shades of blue, orange, and green, all represent

values between 0 and 1.

64.5% of the encoded matrix consists of ze-

roes, while 30.75% of the data consists of ones,

leaving just the remaining 4.75% of encoded data

to be represented as a non-whole number. It is

remarkable how such a complex sequence with

so many intricacies, as shown on the left, can be

represented using mostly just two values. However,

these pictures only represent one SNP segment.

If we look at a visual representation of numerous

compressed segments together, we get the image

in Figure 2.3.

If each column in this image is examined, a

recurring pattern can be observed for every al-

ternating column, Qualitatively, this can be de-

scribed by noting that every odd numbered column

tends to have a lot of thin yellow bands that are

placed evenly throughout the column. On the other

hand, all of the even numbered columns tend to

have thicker yellow bands that are concentrated

in certain areas, while other areas in the column
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Fig. 2.3. This image is a visual representation of numerous

compressed SNP segments that were produced by GenComp.

are made up of very thick blue bands which

are broken up by intermittent, thin yellow bands.

Quantitatively this can be seen by looking at the

relative frequencies of zeroes and ones in each

of the 10 columns. When we do this, we get the

relative frequencies shown in Table II.2.

If we look at the odd columns versus the even

columns, a distinct pattern can be observed. The

frequency of 0s in odd columns is closer to 63%

while in even columns 0s occur about 71% of

the time. Similarly, 1s occur around 30% of the

time in odd numbered columns and only around

24% of the time in even columns. Overall odd

columns contain close to 93% 0s and 1s while

even numbered columns average around 95%. To

Column Number % 0s % 1s % 0s and 1s

1 63.14 29.95 93.09

2 70.31 25 95.31

3 63.22 30.18 93.4

4 71.65 24.42 96.07

5 62.62 29.76 92.38

6 71.07 24.06 95.13

7 63.25 30.03 93.27

8 71.13 24.16 95.29

9 63.25 29.76 93.01

10 71.02 24.58 95.6

TABLE II.2

FREQUENCIES OF ZEROES AND ONES

demonstrate the statistical significance of the dif-

ference between the proportions found in the odd

numbered and even numbered columns, we run

a two proportion z test for statistical significance

with the data. If we consider all 75 segments, each

column has a total of 3000 examples. Therefore,

each proportion, which is the mean proportion for

all odd or even columns, has 1500 examples. We

run two proportion z tests on all three proportions:

the proportion of 0s, the proportion of 1s, and the

combined proportion of 0s and 1s. Each of the tests

is a two tailed test where the null hypothesis is

that the population proportion for the odd and even

columns are identical and the alternate hypothesis

is that the population proportions for the odd and

even columns are different. For all three tests we
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Proportion Being Tested p-value

Proportion of Zeros 1.87×10−48

Proportion of Ones 1.30×10−26

Proportion of Zeros and Ones 7.00×10−20

TABLE II.3

P-VALUES FOR FREQUENCY OF ZEROES AND ONES IN COLUMNS

OF THE COMPRESSED VARIANT CALLS.

use an α level of 0.001 to test significance. The

p-values we obtain are shown in Table II.3.

All three p-values are much much smaller than

the α level, therefore we can state that our re-

sults are statistically significant and reject the

null hypothesis. By rejecting the null hypothesis

we accept the alternate hypothesis and show that

the proportion of zeros, ones, and the combined

proportion of zeros and ones are all different in

odd versus even columns. These results strongly

suggest that there indeed is an alternating pattern

in the relative frequencies of 0 and 1 found in

compressed SNP sequences. This implies that SNP

sequences can be represented in a simple manner

using binary sequences.

2) Biological Analysis of Raw Data and Align-

ment Data: Our results with GenComp lead us to

the conclusion the genomic data is very compress-

ible due to an abundance of intrinsic biological

patterns. Discovering the nature of these patterns

can prove to be a very interesting area of research,

since they allow us to learn new biology about the

structure of DNA.

Actually understanding what genomic patterns

enable such compression is both an interesting and

challenging task. As a starting point we decided

to search for patterns in the raw genomes. Using

Wernberg coloring, we observe several simple pat-

terns in the genome, such as those shown in Figure

2.4. However, such patterns, albeit dramatic, are

not present throughout the entire genome and are

by no means the sole patterns found in genomic

data. It would be interesting to see what other

intrinsic patterns genomes may contain that are not

plainly visible to the eye. While GenComp has not

yet been tested on raw genomic data, the results

suggest a variety of applications of GenComp to

raw data. The patterns described above could be

investigated by running an autoencoder on raw ge-

nomic data. Analysis of what information can and

cannot be compressed along with an investigation

into the origin of this compressibility could help

determine if certain biochemical pathways have a

much less random structure than others.

Another potential application of this project

would be to create an alignment map meta predic-

tor. As explained earlier, alignment maps generally

consist of ten data collections. For compressing

these maps, GenComp can learn about each data
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Fig. 2.4. A collection of easily identifiable patterns within the raw

data of human genomes, colored using Wernberg compression.

collection separately, and build specialized autoen-

coders for each section of a dataset. Examination

of patterns between datasets would also be very

interesting. For instance, certain sequences of qual-

ity score information could correspond to certain

gap sequences. If different datasets prove to be

associated, this will enable the construction of a

meta predictor for genomic data. This software

would then be able to predict certain features

of a genome when provided with an incomplete

dataset. Such a development may prove useful for

limited-data pharmacogenomics and understanding

the structures of genomes.

It is also intriguing to look at the structures of

the autoencoders themselves—we can perform fea-

ture extraction on autoencoders which are trained

on the compressed data, as shown in Fig. 2.5. If

this data is needed in a classification application,

such feature extraction would aid in the creation of

abstract feature sets needed for the construction of

a deep classification network. The resulting deep

network, known as a stacked autoencoder, could be

used to classify genomic data using a plethora of

criteria including compressibility, links to genetic

diseases, and overlaps between different species.

Hypothetically such work could help to discover

far more simplified versions of genomes which

would fundamentally alter the study of genetics

and its applications.

Fig. 2.5. (from left to right) the original, uncompressed sequence

alignment map; the features learned by the first-level autoencoder;

the features learned by the second-level autoencoder.

III. CONCLUSION

GenComp was designed to use neural networks,

specifically sparse undercomplete autoencoders, to

automatically identify patterns in genomic data and

use these patterns to compress the data. Testing

showed that GenComp was able to compress vari-

ant data more than forty times more effectively

15



than zip and gzip compression. However, encoding

times for GenComp proved to be significantly

slower than zip or gzip. It was also determined

that it is necessary to optimize GenComp for

parallelization and run it on a computing cluster

to get conclusive data. Personal computers are

seldom used in genomic applications, and to reflect

realistic conditions GenComp must be tested for

performance on servers similar to those currently

used in genomics. GenComp’s decoding times

were also slightly slower than zip and gzip, how-

ever, GenComp’s ability to preserve indexing is

unparalleled by generic compression algorithms, as

in most cases end users who want to decode data

and analyze variants will be looking for only small

portions of extremely large files. In any case where

a user would want less than one twelfth of an entire

file of data, GenComp would outperform zip and

gzip in decoding due to their inability to preserve

indexing. Finally, GenComp did provide some

insight into the biological patterns found in SNP

sequences by suggesting that a recurring binary

pattern could be used to represent such sequences.

Furthermore, analyzing the encoded results for the

variants and the sequences allows us to discover

new features present in the genome. Future dis-

coveries of such patterns in variant and alignment

data could lead to groundbreaking advances in pre-

cision medicine as well as an improved biological

understanding of genetic variation.

There are however some alternate interpretations

of the results observed. For example, there is

a slight possibility that testing of GenComp on

high power computing clusters will still result in

slower encoding performance than gzip and zip.

There are also some alternate expressions for the

biological patterns that were noticed. The binary

nature of the encoded representations could poten-

tially be explained by the need of the autoencoder

to rescale all data to the range of the sigmoid

transfer function, which is 0 to 1. It is also possible

that the autoencoder structure used in GenComp

can succssfully compress any random sequence

of numerical data and GenComp’s compression

cannot actually be attributed to biological patterns.

The goal of this research was to design, develop

and evaluate a genomic compression system which

could produce far better compression than existing

alternatives while also providing some kind of

insight into the biological patterns found in this

data. The development of GenComp has provided

the scientific and medical communities with a

system for lossless, asymmetric genomic compres-

sion that maintains indexing and provides decod-

ing performance comparable to existing solutions.

Furthermore, it may lead to a deeper understanding
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of the intrinsic patterns and structure of genomic

data.

A. Future Work

Our project could be expanded in various direc-

tions and there are numerous improvements that

could be made to get more definitive results as

well. Possible improvements and extensions are

highlighted below.

• GenComp could be optimized for paralleliza-

tion so that it could run on cloud computing

clusters with anywhere from 16-32 cores. This

will provide a far more realistic assessment of

GenComp’s encoding times.

• GenComp could be integrated with medical

electronic health record (EHR) systems. This

would require the development of a simple

API and user interface for GenComp which

would allow users to choose which portions

of which files they wanted to decode.

• Neural network visualization and analysis

tools could be run on GenComp’s autoen-

coders to develop a better understanding of

the biological features which GenComp is

compressing.

• GenComp could be integrated with an effec-

tive quality score compression system such

as QUARTZ. This would enable GenComp

to compress most genomic data found in the

various stages of sequence analysis pipelines.
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