
The PRIMES 2015 Math Problem Set

Dear PRIMES applicant!

This is the PRIMES 2015 Math Problem Set. Please send us your
solutions as part of your PRIMES application by December 1, 2015.
For complete rules, see http://web.mit.edu/primes/apply.shtml

Note that this set contains two parts: “General Math problems” and
“Advanced Math.” Please solve as many problems as you can in both
parts.

You can type the solutions or write them up by hand and then scan
them. Please attach your solutions to the application as a PDF (pre-
ferred), DOC, or JPG file. The name of the attached file must start
with your last name, for example, “smith-solutions.” Include your full
name in the heading of the file.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that posting these problems on problem-solving web-
sites before the application deadline is not allowed. Applicants
who do so will be disqualified, and their parents and recommenders
will be notified.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day. Instead, think about them, on
and off, over some time, perhaps several days. We encourage you to
apply if you can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision
besides your solutions of these problems.
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General math problems
Problem G1. You roll three dice trying to get all three to be equal.

If at some throw two are equal, you keep rolling the third one in the
hope of it turning equal to the other two. What is the chance that you
do not succeed if you are allowed to roll the dice two times? n times?

Solution. Let’s compute the chance p that you will not succeed.
The chance that there will be no two equals on a throw is 5/9. So the
chance of no two equals all the way is (5/9)n. Now, the chance to get a
pair on a throw but not all equals is 90/216 = 5/12. If this happens on
the k-th throw, the chance that we have no luck in the n−k remaining
ones is (5/6)n−k. So we have

p =

(
5

9

)n

+
5

12

n∑
k=1

(
5

9

)k−1(
5

6

)n−k

=
3 · 15n − 10n

2 · 18n
.

Example: for n = 1 this is 35/36 and for n = 2 it is 575/648.
Problem G2. John lives 2 miles north from a road, which is sepa-

rated from John’s house by a grove. If he walks from his house to the
road along any straight line, the last mile of his walk is through the
grove. Find the shape of the grove (describe its northern boundary by
an equation).
Solution. Let the road be the line x = 0 and John’s house be at

the point (0,2). Assume that he walks on the line y = 2 − 2x/a, for
some real a (for a = 0 this is the line x = 0). Its x-intercept is a. The
point where the grove begins has coordinates

(a− a√
a2 + 4

,
2√

a2 + 4
)

which gives a parametric equation of the curve. We can solve for a in
terms of y:

a = 2y−1
√

1− y2

for y > 0. Thus

x = (2y−1 − 1)
√

1− y2

for y > 0. So the equation is

x2y2 = (2− y)2(1− y2).

(the component for y > 0).
Problem G3. Two white and two black rooks are placed at random

on a standard 8-by-8 chessboard. What is the chance that NO white
rook attacks a black rook? (recall that a rook attacks along the vertical
and horizontal line it stands on). Give the answer as a fraction in lowest
terms.
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Solution. The number of rook placements is 64 · 63 · 62 · 61. To
count non-attacking placements, let’s place white rooks first. For the
first one there are 64 positions, and for the second one there are 49
positions so that they don’t attack each other and 14 positions if they
do. In the first case they leave a 6-by-6 board for the black rooks (so
36 · 35 positions), and in the second case a 6-by-7 board (so 42 · 41
positions). Thus the answer is

p =
49 · 36 · 35 + 14 · 42 · 41

63 · 62 · 61
=

2044

5673
.

Problem G4. The number 1 is written on a blackboard. John
plays the following game with himself: he chooses a number on the
blackboard, multiplies it by 2 or 3, adds 1, and puts the result on the
blackboard (if it does not appear there already).

a) How many pairs of consecutive numbers can appear?
b) Can it happen that three consecutive numbers appear on the

blackboard?
c) Can it happen that the numbers n, n + 1, n + 3, n + 4 appear for

some n?
Solution. 1) Infinitely many. If we have a number x, we can also

have 3(2x + 1) + 1 = 6x + 4 and 2(3x + 1) + 1 = 6x + 3.
2) No. A number of the form 3k + 2 can never appear. Indeed, take

the smallest number of this form that appears. Then 3k + 2 = 2m+ 1,
where m also appears, so 2m = 3k+ 1 and hence m = 3p+ 2 for p < k,
contradiction.

3) No. A number divisible by 6 obviously cannot appear, which
together with (b) implies the statement (indeed, n and n + 3 would
have to be divisible by 3 so one of them is divisible by 6).

Problem G5. Prove that for every real C > 0, there is some finite
set A ⊂ Z such that |A + A| ≥ C|A− A| (where |X| is the number of
elements in a set X). Here

A + A := {a + b : a ∈ A, b ∈ A}

and

A− A := {a− b : a ∈ A, b ∈ A}

are the set of pairwise sums and the set of pairwise differences of A,
respectively.

For example, when A = {0, 2, 3, 4, 7, 11, 12, 14}. We have A + A =
[0, 28] \ {1, 20, 27} and A − A = [−14, 14] \ {±6,±13}. (Here [m,n]
denotes {m,m + 1, . . . , n}). Thus |A + A| = 26 and |A − A| = 25, so
the example proves the statement for C ≤ 26/25.
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Solution. Let A1 = {0, 2, 3, 4, 7, 11, 12, 14} as in the example, so
that |A1 + A1| = 26 and |A1 − A1| = 25.

For each n ≥ 2, let An denote the 8n-element set

An = {a0 + a1100 + a21002 + · · ·+ an−1100n−1 : a0, . . . , an−1 ∈ A1}.

We see that

An+An = {b0+b1100+b21002+· · ·+bn−1100n−1 : b0, . . . , bn−1 ∈ A1+A1}

so that |An + An| = 26n. Similarly, |An − An| = 25n. Thus |A + A| ≥
C|A− A| can be achieved by taking A = An with n sufficiently large.

Remark. Typically one expect A− A to be larger than A + A since
two elements of A generate two differences yet only one sum. Sets A
with |A + A| > |A − A| have been called more sums than differences
sets. The first example of such a set was found by Conway in the
1960’s (his set is the one given in the problem). These sets turn out to
be more common than one might initially guess. It is expected (from
experimental data and also proved to some extent) that about .045%
of all subsets of {1, 2, . . . , n} satisfy |A+A| > |A−A| when n is large.
For more information, see the following references:

M. B. Nathanson, Sets with more sums than differences, Integers 7
(2007), A5, 24 pp. (electronic)

G. Martin and K. O’Bryant, Many sets have more sums than dif-
ferences, Additive combinatorics, CRM Proc. Lecture Notes, vol. 43,
Amer. Math. Soc., Providence, RI, 2007, 287305. arXiv:0608131

Y. Zhao, Sets characterized by missing sums and differences, J. Number
Theory 131 (2011), 2107–2134. arXiv:0911.2292.

Given the “tensor power” construction as in the solution, a more
satisfying problem is to determine the maximum and minimum possible
values of log |A + A|/ log |A− A|. This is open.

Problem G6. Let an, n ≥ 1 be the sequence determined recursively
by the rule

a1 = 1, an+1 =
n + 2

n + 1
an +

n3 + 3n2 + 2n− 2

n(n + 1)
.

Find a formula for an.
Hint. Compute the first few values and try to guess the answer.
Solution. By computing the first few terms and interpolating, we

guess that an = (n3 − n + 1)/n. This is easily proved by induction.
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Problem G7. Let Mn denote the n× n matrix whose entries are 0
below the main diagonal and 1 on and above the main diagonal. E.g.,

M4 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .

Determine M r
n for any r ≥ 1.

Solution. We have Mn = 1 + J + ...+ Jn−1, where J has ones right
above the main diagonal and zeros elsewhere. This equals (1 − J)−1

since Jn = 0. So Mn = (1 − J)−r =
∑

m≥0
(
m+r−1
r−1

)
Jm. The ij-th

element in question is the coefficient of J j−i, which is
(
j−i+r−1

r−1

)
.
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Advanced math problems
Problem M1. There are 2k points on the plane. No three of them

are co-linear. We build the following graph based on this configuration.
Each point is a vertex. Two vertices are connected if and only if the
line passing through them divides the other points into two equal sets:
there are (k− 1) points on each side of the line. We call this graph the
middle-road graph based on the given configuration of points.

a) The complete bipartite graph Kn,m has vertices 1, ..., n + m, and
i, j are connected if and only if i ≤ n, j > n, or i > n, j ≤ n. For which
pairs n,m, can the complete bipartite graph Kn,m be the middle-road
graph of some configuration?

b) The path graph Pn on n vertices is the graph with vertices 1, ..., n
such that i, j are connected if and only if |i− j| = 1. For which n, can
the path graph Pn be the middle-road graph of some configuration?

If the graph exists explain how to construct it. If not, prove that it
doesn’t exist.

Solution.
a) The middle-road graph is called a halving-edges graph. By con-

tinuously rotating a line around a point we can see that the halving
edges graph doesn’t have isolated vertices. Moreover, the points on
the convex hull have degree 1. That means the halving graph can be a
complete bipartite graph only if at least one of n, m is 1. In addition,
the total number of vertices is 2k. So it could only be K1,2k−1. Such
a configuration can be constructed by placing 2k − 1 vertices on the
convex hull of a regular (2k − 1)-gon and the last vertex at its center.

b) A more subtle rotation argument can show that all vertices of a
halving graph have an odd degree. That means the only way it can be
a path graph is for n = 2. This configuration can be constructed by
using any two points on a plane.
Problem M2. Let n ≥ 2 be an integer. You choose n points

x1, ..., xn uniformly at random on a circle of length 2. Let 0 < t ≤ 1.
What is the chance that all the points belong to an arc of length t?
Solution. Let Pn(t) be the probability that the shortest arc con-

taining all the points has length ≤ t. Suppose this happens, and the
smallest length of an arc containing x1, ..., xn−1 is s ≤ t. Then the
probability that after adding xn the minimal arc will have length ≤ t
is t− s/2. Thus,

Pn(t) =

∫ t

0

P ′n−1(s)(t− s/2)ds, n ≥ 3.
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Also, P2(t) = t. From this it is clear that Pn(t) = Cnt
n−1 for some Cn.

So we get from the above equation

Cn+1 = Cn(n− 1)(
1

n− 1
− 1

2n
) =

n + 1

2n
Cn−1.

This implies that Cn = n
2n−1 , so Pn(t) = n(t/2)n−1. So we get: P2 = t,

P3 = 3
4
t2, P4 = 1

2
t3, etc.

Problem M3. (i) Let x1, ..., xk be variables, and n1, . . . , nk be pos-

itive integers. Let A be the matrix with entries aij := x
nj−1
i , and

P (x1, ..., xk) = detA. Show that

P (x1, ..., xn)∏
i<j(xi − xj)

is a polynomial with integer coefficients.
(ii) Show that ∏

i<j

qni − qnj

qi − qj

is a polynomial in q with integer coefficients. Deduce that∏
i<j

ni − nj

i− j

is an integer.
Solution. (i) This follows since the numerator is antisymmetric.
(ii) This follows from (i) if we plug in xi = qi−1 and use the Vander-

monde determinant formula for the numerator. The second statement
follows from the first one by computing the limit q → 1.

Problem M4. Let f be a continuous function on the plane. In any
rectangle ABCD so that AB is parallel to the x-axis and B has greater
y-coordinate than C, we have∫

ABC

f =

∫
CDA

f.

Prove that f is constant.
Solution. Let x1 < x2 < x3, y1 < y2 < y3. Let Pij = (xi, yj).

Let R1 = P11P12P22P21. R2 = P12P13P23P22, R3 = P21P22P32P31, R4 =
P22P23P33P32. Let R = P11P13P33P31. For a region Q, let I(Q) be the
integral of f over Q. For a rectangle Q, let Q+, Q− be the upper and
lower triangle of Q, as in the formulation of the problem (so I(Q+) =
I(Q−)). Applying the condition on f to R, we get

I(R1) + I(R−2 ) + I(R−3 ) = I(R4) + I(R+
2 ) + I(R+

3 ).
7



Thus, I(R1) = I(R4), which implies that I(Q) = I(P ) for any two
rectangles Q,P with sides parallel to axis, provided that Q,P intersect
by a vertex at the right upper, respectively left lower corner and have
the same area. Tending the width of Q and height of P to zero, we
find that ∫

L

f/`(L) =

∫
M

f/`(M),

where L is a vertical interval and M a horizontal interval forming the
letter Γ, and ` is the length. Tending the length of L to zero, we get∫

M

f = `(M)f(M−),

where M− is the left end of M . Differentiating by the length of M , we
get f(M+) = f(M−) where M+ is the right end of M . Similarly, tending
the length of M to zero and then varying L, we get f(L+) = f(L−) for
any vertical interval. This implies that f is constant.

Problem M5. Two players, A and B, are playing a game with a
special coin which, when tossed, is heads up with probability 2/3 and
tails up with probability 1/3. The rules are as follows:

• First A chooses one pattern from the four patterns HH, HT,
TH and TT.
• Next B chooses one pattern different from the one A chose.
• Then they toss the coin until one of their chosen patterns ap-

pear. That person will win the game.

For example, if A chose HH and B chose TT, and by tossing the coin
they got HTHTHTT, then the winner would be B.

Now suppose A and B are both smart enough. Then what is the
probability that A wins the game? What pattern should A choose?
What pattern should B choose?

Solution. We compute probabilities that one of the possible 4 out-
comes appears earlier than another.

First compute P (HH < HT ). This happens iff the beginning is HH,
or THH, or TTHH, etc. So the answer is

4

9
(1 +

1

3
+

1

9
+ ...) =

2

3
.

Now compute P (HH < TH). This happens iff the beginning is HH,
so the answer is 4/9.

Now compute P (HH < TT ). This happens iff the beginning is HH,
or HTHH, or HTHTHH,... or THH, THTHH, THTHTHH, etc. This
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gives

(1 +
1

3
)(1 +

2

9
+

22

92
+ ...)

4

9
=

16

21
.

Now compute P (HT < TT ). This happens iff the beginning is H,
or TH, so the probability is 2/3 + 2/9 = 8/9.

Now compute P (TH < TT ). This happens iff the beginning is TH
or HTH or HHTH or HHHTH, etc. So the answer is

(1 +
2

3
+

22

32
+ ...)

2

9
=

2

3
.

Finally, compute P (HT < TH). This happens iff the beginning is
H, so the probability is 2/3.

Thus, A should select HH and B should select TH, and the proba-
bility of A winning will be 4/9.
Problem M6.
Let V be a subset of a finite field L which is closed under addition

(i.e, a subgroup of the additive group of L).
(a) Show that the polynomial

∏
v∈V

(X + v) ∈ L [X] is a p-polynomial

(that is, an L-linear combination of the monomials Xp0 = X,Xp1 =

Xp, Xp2 , ...).
(b) Let t ∈ L \ V . Prove that

∑
v∈V

1

t + v
=

(∏
v∈V

1

t + v

)
·

 ∏
v∈V \0

v

 .

Remark
Part (a) is a known fact (e.g., it immediately follows from [Conrad14,

Theorem A.1 2) and Corollary A.3]). Part (b) is a lemma from unfin-
ished work of Darij Grinberg and James Borger on Carlitz polynomials.

Solution sketch
We WLOG assume that V 6= 0 (since otherwise, the statements

are evident). Let p = charL. Since V is finite, every element of V
has finite order. This, combined with V 6= 0, easily shows that p is
positive, so that p is a prime. Then, L is a field extension of Fp, and
V is a finite-dimensional Fp-vector subspace.

Let W be the polynomial
∏
v∈V

(X + v) ∈ L [X].

(a) We need to prove that W is a p-polynomial.
For every finite-dimensional Fp-vector subspace A of L, let WA de-

note the polynomial
∏
v∈A

(X + v) ∈ L [X]. Then, W = WV . Hence, it is
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enough to show that WA is a p-polynomial for every finite-dimensional
Fp-vector subspace A of L.

It is easy to show that if A is a finite-dimensional Fp-vector subspace
of L, and if B and C are two Fp-vector subspaces of A satisfying A =
B ⊕ C, then WA = WB ◦WC , where the sign ◦ denotes composition
of polynomials (i.e., for two univariate polynomials P and Q, we set
P ◦Q = P (Q)). Hence, in this situation, in order to prove that WA is a
p-polynomial, it is enough to show that WB and WC are p-polynomials
(since the composition of two p-polynomials over a field of characteristic
p is a p-polynomial again). Hence, we can reduce our goal to smaller
subgoals, until at the end it remains to prove that WA is a p-polynomial
whenever A is an Fp-vector subspace A of L of dimension ≤ 1 (since
every finite-dimensional Fp-vector space is a direct sum of finitely many
such subspaces). But this is easy to check: If A is of dimension 0, then
WA = X; and if A is of dimension 1, then A = Fpw for some nonzero
vector w ∈ L, and therefore

WA = WFpw =
∏

v∈Fpw

(X + v) =
∏
x∈Fp

(X + xw) = (X + 0w) (X + 1w) ... (X + (p− 1)w)

= Xp − wp−1X

(
by the homogenization of the polynomial identity

(X + 0) (X + 1) ... (X + (p− 1)) = Xp −X in Fp [X]

)
,

which is a p-polynomial. Thus, Problem 2 (a) is solved.
(b) Part (a) yields that the polynomial W is a p-polynomial. Hence,

its derivative equals its coefficient in front of X1 (because the derivative
of any p-polynomial in characteristic p equals its coefficient in front of
X1). But this coefficient is

∏
v∈V \0

v. Thus, we know that the derivative

of W equals
∏

v∈V \0
v. Hence, W ′ (t) =

∏
v∈V \0

v.

On the other hand, since W =
∏
v∈V

(X + v), the Leibniz formula

yields

W ′ =
∑
w∈V

(X + w)′︸ ︷︷ ︸
=1

·
∏
v∈V ;
v 6=w

(X + v) =
∑
w∈V

∏
v∈V ;
v 6=w

(X + v) =
∑
w∈V

∏
v∈V

(X + v)

X + w

=

(∏
v∈V

(X + v)

)
·

(∑
w∈V

1

X + w

)
.
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Applying this to X = t, we obtain

W ′ (t) =

(∏
v∈V

(t + v)

)
·

(∑
w∈V

1

t + w

)
,

so that∑
w∈V

1

t + w
=

1∏
v∈V

(t + v)︸ ︷︷ ︸
=

∏
v∈V

1

t + v

· W ′ (t)︸ ︷︷ ︸
=

∏
v∈V \0

v

=

(∏
v∈V

1

t + v

)
·

 ∏
v∈V \0

v

 .

Rename the index w as v and obtain the claim of Problem 2 (b).
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