Inference of Directed Acyclic Graphs Using Spectral Clustering

Allison Paul Fifth Annual MIT PRIMES Conference May 17, 2015

Introduction

Genes A and B are involved in the same process

Gene Ontology (GO)

Examples of Gene Ontology Terms: oxygen binding, response to x-ray, sympathetic nervous system development

This type of network is a **directed acyclic graph** (DAG)

Goal: Infer this graph using gene similarities

What is gene similarity? Functional similarity: gene expression Physical similarity

Problem Statement: Given a gene similarity matrix, find the directed acyclic graph

Inferring such a graph using a gene similarity matrix is NP-hard in general.

Current Method

Bottom-up algorithm using maximal cliques (Kramer et al. 2014)

Clique: a subset of nodes in which each pair of nodes is connected by an edge

Computational complexity: $\mathcal{O}(3^{n/3})$

Our Approach

We propose an approximate algorithm that finds quasi-cliques among the genes

Top-Down Algorithm: we infer nodes at layer *l* using nodes at layer *l* - 1

Spectral Clustering We analyze the top k-1 eigenvectors of the similarity matrix

K-Means Algorithm

Greedy algorithm that identifies clusters among points in ${\ensuremath{R}}^n$

Overlapping Clusters

The original problem can be thus simplified to the inference problem of overlapping clusters in a network.

Spectral Clustering

Use spectral clustering methods to partition network into k clusters

Metric for combining clusters

 $W(C_A, C_B) = density(C_AUC_B) - average(density(C_A), density(C_B))$

 $W(C_1, C_3) = -0.2$

 $W(C_1, C_2) = -0.03$

Cluster Similarity Matrix

 $M_{i,j} = W(C_i, C_j)$

	1	2	3	4	5	6	7	8	9
1	0	02	172	20	082	273	122	321	273
2	02	0	031	019	091	304	14	102	177
3	172	031	0	041	155	203	37	088	209
4	20	019	041	0	027	012	221	298	078
5	082	091	155	027	0	034	098	120	192
6	273	304	203	012	034	0	017	038	232
7	122	14	37	221	098	017	0	044	311
8	321	102	088	298	120	038	044	0	029
9	273	177	209	078	192	232	311	029	0

> threshold

Finding Maximal Cliques

We are left with the same problem as before: identifying overlapping clusters.

Except, we have greatly reduced the dimension of the problem!

Use the maximal cliques to combine clusters

Average density of clusters vs. number of clusters (k = 1,2,...,10)

Applying this algorithm successively to a real gene similarity matrix to infer the entire DAG

Acknowledgements

I would like to thank my mentor, Soheil Feizi, for all his help!

Also, thank you PRIMES for this great experience!