
An Implementation and Analysis of a Kernel

Network Stack in Go with the CSP Style

Harshal Sheth & Aashish Welling

Abstract

Modern operating system kernels are written in lower level languages such as C.
Although the low level functionalities of C are often useful within kernels, they also
give rise to several classes of bugs. Kernels written in higher level languages avoid
many of these potential problems, at the possible cost of decreased performance. This
research evaluates the advantages and disadvantages of a kernel written in a higher
level language. To do this, the network stack subsystem of the kernel was implemented
in Go with the Communicating Sequential Processes (CSP) style. Go is a high level
programming language that supports the CSP style, which recommends splitting large
tasks into several smaller ones running in independent “threads”. Modules for the
major networking protocols, including Ethernet, ARP, IPv4, ICMP, UDP, and TCP,
were implemented. In this study, the implemented Go network stack, called GoNet,
was compared to a representative network stack written in C. The GoNet code is more
readable and generally performs better than that of its C stack counterparts. From
this, it can be concluded that Go with CSP style is a viable alternative to C for the
language of kernel implementations.

1 Acknowledgments

We would like to thank our mentor, Cody Cutler, for
his constant guidance and encouragement. We would
also like to acknowledge Prof. Frans Kaashoek, who
recommended initial direction for this project. Fi-
nally, we would like to thank the MIT PRIMES pro-
gram for providing us with this opportunity.

2 Introduction

Modern operating systems utilize a kernel to inter-
face with the hardware available to them. Most cur-
rent operating system kernels are written in the C
programming language, which allows them to per-
form low level functions effectively. However, C also
allows a variety of problems to occur. This paper
explores the viability of writing a kernel with CSP
style in the Go programming language as a means of

avoiding some of the problems associated with cur-
rent operating system kernels. The network stack,
one of many kernel subsystems, was built to eval-
uate the advantages and disadvantages of this ap-
proach. To ensure that using Go with CSP style
does not hurt the performance of the network stack,
the stack’s performance was then compared to that
of a conventional C language network stack. The
readability, modularity, and concurrency of the two
network stacks’ code were also evaluated.

2.1 Operating System Kernels

Computers are an integral part of modern day soci-
ety. Computers are expected to be both reliable and
efficient. This requires a stable and bug-free operat-
ing system kernel, as otherwise, the bugs within the
kernel may make other user applications operate un-
stably and unreliably. The operating system kernel

1

serves as a bridge between the applications and users
of a computer and the hardware of the machine. The
kernel manages the system resources, including mem-
ory and hard disk space, and handles the scheduling
of processes on the CPUs. It also provides users ac-
cess to input and output devices and enables network
access. User applications run on top of the kernel,
and make use of the kernel’s functionality through
its library of system calls.

2.2 Problems with Modern Kernels

Most commodity operating system kernels are im-
plemented in the C programming language. C is the
most popular kernel language because it gives a high
degree of control over memory usage and other lower
level aspects of the program operation. This free-
dom comes at the cost of allowing problems such
as double-free bugs (freeing memory twice), out of
bounds errors on arrays (accessing memory that is
not part of an array), and deadlocks. It also does
not ensure type safety (preventing misinterpretation
of data by interpreting data of one type as another
type).
As the number of microprocessor cores per com-

puter increases [1], the ability to take advantage of
multithreading is increasingly advantageous to a ker-
nel’s overall design. However, kernels implemented in
C are not able to easily take advantage of all of the
cores of a machine, because C does not lend itself to
leveraging modern microprocessor features. Threads
in C, which are used to distribute work among cores,
are expensive in both memory and CPU usage; syn-
chronizing these threads is even more difficult and
sometimes convoluted.

2.3 A Kernel Written in a Higher
Level Language

One way to overcome some of these drawbacks is
to implement the kernel in a higher level language.
This may eliminate many of the problems associated
with kernels implemented in C. For example, many
higher level languages provide array bounds checking
and garbage collection. However, programs written
in higher level languages generally run slower than

those written in C, and sometimes will incur addi-
tional overheads from interpreters, automatic mem-
ory management, and garbage collection. In ad-
dition, the more abstracted higher level languages
could make it difficult to perform some of the ker-
nel’s low level tasks.

2.4 Existing Work

There have been a few attempts to implement ker-
nels using higher level languages. None of these have
achieved widespread adoption for a variety of rea-
sons.

Mirage Mirage is a Linux Foundation project that
focuses on turning a web application into a “stan-
dalone, specialized unikernel that runs under the Xen
hypervisor” [2]. It contains rudimentary implemen-
tations of the kernel subsystems, written in OCaml.
Because it is built for use within a unikernel, a single-
user single-process kernel designed specifically to run
in a Virtual Machine, it does not satisfy the needs of
most users. In addition, it is not able to achieve par-
allelism on multiple cores, as it was built for running
within a single process.

Pycorn Pycorn is an operating system written in
Python. It currently is compatible with only 16-bit
ARM-based microcomputers [3]. Because Python is
an interpreted language, Pycorn is extremely slow in
practice, and performance is not one of the project’s
goals. Because Pycorn has limited target platforms
and is not focused on performance, it has never been
fit for widespread use. The project has been inactive
since late 2012.

2.5 Kernel Subsystem

Since implementing an entire kernel is a massive en-
gineering effort, a single kernel subsystem was imple-
mented instead. The subsystem chosen was the net-
work stack, which is a necessary feature of any kernel.
The network stack’s functionality and performance
can easily be tested, making it an ideal subsystem to
implement.

2

2.6 Programming Language Selection

A kernel subsystem was built in Go to demonstrate
the comparative advantages of writing the kernel
in a higher level language. Go, specifically, was
chosen because it lends itself to the concurrent se-
quential processes (CSP) style. The CSP style pro-
motes deconstructing complicated tasks into smaller,
more manageable subtasks. These subtasks can be
done with individual processes, which communicate
with each other to complete the original, larger task.
Goals of the CSP style include helping the program-
mer design, implement, and validate complex com-
puter systems [4], and this is especially important
when designing software as complicated as a ker-
nel. Go provides a thread-safe way of using CSP
style through its version of threads, called goroutines,
and a synchronized communication construct called
a channel. The Go runtime automatically schedules
goroutines onto the physical cores of the system. The
CSP style allows the Go programmer to easily take
advantage of all of the cores of a computer while
maintaining readability and reducing bugs. This is
because the network stack can be split into multiple
subtasks that can all run inside their own goroutines,
which are dynamically scheduled to efficiently take
advantage of all available cores. This also improves
modularity of the code which improves readability
and makes it easier to debug. The CSP style is only
feasible in a garbage collected language. Go provides
the necessary garbage collection as well as strong typ-
ing, which eliminates entire classes of bugs including
incorrect type casting, double free errors, and use
after free errors. This, among other things, makes
Go code simple and easy to maintain. Furthermore,
Go’s defer statement allows for easier cleanup at the
end of functions, reducing the likelihood of deadlocks
from neglecting to unlock mutexes.

2.7 Purpose

The advantages of Go and CSP Style may come with
a cost. For example, garbage collection has a perfor-
mance overhead and causes the entire Go runtime to
suspend briefly [5]. In addition, using multiple cores
requires communication between these cores, which

can be expensive. The purpose of this project is to
determine whether the benefits of Go, a higher level
language, and CSP Style outweigh the disadvantage
of having decreased raw speed.

3 Methods

To implement a fully independent network stack, the
Go stack, named GoNet, was built on the tap in-
terface. For full functionality, all basic network pro-
tocols, including Ethernet, ARP, IPv4, ICMP, UDP,
and TCP, were implemented. To ensure that GoNet’s
performance was not impacted, latency and through-
put were measured and compared to that of a similar
network stack written in C.

3.1 Tap Interface

To fully simulate an independent network stack,
GoNet operates on a virtual network interface called
tap. A tap interface is a virtual network interface,
and it mimics actual hardware with simple software.
GoNet reads and writes to the tap interface as if it
were a normal, physical interface, and the tap inter-
face, in conjunction with the bridge interface, acts as
a router into a subnetwork of the host operating sys-
tem. This allows GoNet to even utilize its own MAC
address and IP address, and to connect to external
networks

3.2 Protocol Implementations

GoNet implements protocols on the data-link, net-
work, and transport layers [6]. Each layer runs inde-
pendently of the other layers and protocols, as shown
in Figure 1. This allows for increased concurrency,
as well as increased efficiency under high loads.
The implementation of each protocol uses a similar

structure: a “packet dealer”. The IP packet dealer
is illustrated in Figure 2. The packet dealer reads
packets from the lower layer, transmitted through
channels. Channels are represented by the arrows in
Figures 1 and 2. The IP packet dealer sends packets
to different IP readers running in their own gorou-
tines, represented in figure 2 by separate boxes. As

3

Figure 1: This flowchart illustrates how each network
stack protocol receives and processes independently
from the other protocols. Each protocol runs in its
own set of goroutines. Therefore, each protocol can
run concurrently with one another. Received data
are passed up the stack in channels which are repre-
sented by the black arrows.

IP readers finish processing the packets they receive
from the IP packet dealer, they forward the processed
data to the next layer packet dealers.

Ethernet The Ethernet layer allows for different
network layer protocols to bind to a specific Ether-
net protocol. For example, the IPv4 implementation
binds to the Ethernet protocol 2048 to receive all
IPv4 packets, and the ARP implementation binds to
Ethernet protocol 2054.

ARP In order to send data to other network stacks
on a local network, GoNet needs the MAC address of
the target machine. The Address Resolution Proto-
col (ARP) is implemented to enable GoNet to obtain
this information. ARP allows GoNet to get the MAC
address from the destination computer’s target pro-
tocol address, such as the destination computer’s IP
address [7]. The GoNet implementation of ARP cre-
ates a goroutine for each ARP request. This allows
each ARP request goroutine to block until either the
main ARP packet dealer notifies it of a response or
the request times out.

IPv4 The Internet Protocol Version 4 (IPv4) de-
sign is illustrated in Figure 2. As explained earlier,
it uses a packet dealer structure. It also includes
multiple IP Readers, and fragment assemblers when
needed. Communication between all of these com-
ponents is accomplished through the channels repre-
sented by the black arrows in the Figure.

IPv4 fragmentation is utilized when an IP payload
would make the IP packet larger than the maximum
transmission unit (MTU). The IP segment is split up
into multiple fragments, each containing data needed
for reassembly. When the segments at the destina-
tion, they must be reassembled into the original IP
segment [8]. GoNet’s fragment assemblers illustrate
the advantages of CSP style.

Each fragment assembler encapsulates both the
process of reassembling a fragmented IP segment,
and the associated data. This approach reduces the
complexity of the code, because each fragmented IP
packet has its own designated assembler, in the style
of CSP. This is contrary to traditional fragment as-
sembly methods, where a global data structure man-
ages the fragment assembly for all packets. This
localization of data is made more feasible by the
lightweight design of goroutines and the garbage col-
lected Go language, which greatly reduces the likeli-
hood of memory leaks.

ICMP and Ping GoNet implements the ping
portion of the Internet Control Message Protocol
(ICMP). The ICMP implementation follows the nor-
mal packet dealer structure. The ping implementa-
tion also has its own packet dealer which handles all
of the ping ICMP packets sent first to the ICMP
packet dealer. The ping packet dealer forwards re-
ceived ping requests to a special set of goroutines
that reply to ping requests. If GoNet has sent ping
requests, then the ping packet dealer forwards the
replies to a dedicated goroutine that is started for
each of the mentioned ping requests.

UDP The User Datagram Protocol (UDP) is a
connection-less protocol. Because UDP is a relatively
simple protocol, the GoNet implementation just uses
a basic packet dealer to forward packets to their as-

4

Figure 2: This flowchart shows the design of the IPv4 protocol packet dealer. Each box represents a goroutine,
and each black arrow represents a channel. The IPv4 packet dealer reads packets from the output channel
of the Ethernet layer and forwards these packets to the correct IP Reader using channels. The packets are
processed by the IP readers and are then forwarded to the packet dealer of the protocol above.

sociated UDP readers.

TCP The Transmission Control Protocol (TCP) is
a connection-oriented transport layer protocol that
guarantees in order delivery of data. Because TCP
is connection-oriented, it utilizes a server and a client
to initialize a connection. Once a connection is es-
tablished, it is managed by a Transmission Control
Block (TCB) [9].

The GoNet implementation of TCP uses the stan-
dard packet dealer structures to manage source and
destination ports. Each TCB utilizes two long-
running goroutines. One processes incoming packets.
The other waits for and sends data, as well as cre-
ates additional goroutines that manage the retrans-
mission of single packets. Each of these two long-
running goroutines represent half of the duplex TCP
connection. Internally, it also uses channels to syn-
chronize and manage all of the goroutines that are
created. For example, the incoming packet proces-
sor goroutine uses channels to notify packet retrans-
mission goroutines when an acknowledgment packet

arrives.

3.3 Testing

GoNet’s performance was compared to that of tapip,
a multi-threaded network stack written in C [10].
This comparison allows for the evaluation of the pros
and cons of a network stack written in a higher level
language with the CSP style. Both stacks imple-
ment similar protocols, operate in user space, and
utilize a tap interface. This allows the performance
of both stacks to be compared fairly. The testing was
performed on a Ubuntu 14.04 machine with Linux
3.13.0, 16 GB of memory, and an Intel Xeon Quad-
Core Dual Socket processor.

3.3.1 Latency

The first performance metric that was evaluated was
latency. To measure latency, the response times of 50
ping requests were averaged. The ping requests were
sent from the Linux kernel that both stacks were run-
ning on. To determine the stacks’ performance un-

5

der increased load, multiple pings were sent from the
Linux kernel simultaneously. The test was run from
1 to 1000 concurrent ping “connections” to simulate
possible loads that a network stack might endure.
To ensure that the tests on the two stacks were run
fairly, all other variables were held constant, includ-
ing the number of ping requests each ping “connec-
tion” would send, the ICMP receive buffer size, the
interval between the ping requests, and the ping re-
quest packet size.

3.3.2 Throughput

The second performance metric that was evaluated
was throughput. The throughput of a stack is the
amount of data that it can send or receive in a given
amount of time. The following process was used to
measure the throughput of the stacks:

1. A TCP server was initialized.

2. A TCP client was initialized. The connection
was made over the local network (localhost) to
eliminate any overhead caused by the tap inter-
face.

3. Four kilobytes (kB) of data were sent from the
client to the server.

4. The total real time that the stack took to com-
plete the said procedures completely was mea-
sured. This time, along with the specific amount
of data sent, was used to calculate throughput.

The stacks’ performances were measured as the num-
ber of clients increased, to test the comparative scal-
ability of the stacks. The test was done up to 100
concurrent clients.
A variety of precautions were taken to ensure that

the throughput was measured precisely. For exam-
ple, all comparable buffer sizes were set equal. In
tapip, each client and server connection ran in its
own thread; GoNet was similar, except it used gorou-
tines instead of threads. Additional precautions were
taken to ensure that each connection had completed
before stack termination and that the payloads of
each connection were transferred in their entirety.

4 Results and Discussion

The code of GoNet was far simpler that that of its C
stack counterpart. In addition, the performance, over
both latency and throughput, of GoNet was actually
better than that of tapip.

4.1 Correctness

In terms of protocol operation, both GoNet and tapip
were correct. This was determined by successfully
testing both stacks against a Linux Kernel TCP end-
point. However, tapip leaked memory during the
test. This is because tapip stores packets in packet
buffers, and these packets are sometimes double freed
or not freed at all. When tapip double frees memory,
it either crashes or causes undefined behavior. When
tapip does not free memory, the unfreed memory ac-
cumulates and hogs resources until the system even-
tually crashes. Go makes it easy to avoid these types
of problems with its built in garbage collection.

4.2 Code Comparison

It is hard to quantitatively evaluate the merits of
writing code in the Go language compared to the C
language. The following code comparisons are used
to illustrate some of the advantages of higher level
languages. The code that is being compared is all
part of the IP fragment reassembly process. The C
code is on the top of each comparison segment, and
the Go code is on the bottom.

Fragment Reassembly Initialization The fol-
lowing code segments compare the steps that tapip
and GoNet take to initialize a new fragment reassem-
bler when a new fragmented IP segment arrives.
GoNet creates a new goroutine for each packet that is
being reassembled, while tapip uses a global structure
to hold the data for all of the ongoing reassemblies.

struct fragment *frag;

frag = xmalloc(sizeof(*frag));

list_add(&frag->frag_list, &frag_head);

list_init(&frag->frag_pkb);

return frag;

6

ipr.fragBuf[bufID] = make(chan []byte,

FRAG_ASSEM_BUF_SZ)

quit := make(chan bool, 1)

done := make(chan bool, 1)

didQuit := make(chan bool, 1)

go ipr.fragAssembler(/* ... */)

go ipr.killFragAssembler(/* ... */)

Adding Fragments to a Reassembly Queue
These code comparisons show how the structure de-
fined in the fragment reassembly initialization makes
adding fragments to the processing queue easier in
GoNet than in the C stack. This allows the gorou-
tine that processes an IP segment in GoNet to simply
forward the packet to its respective reassembler and
move onto subsequent packets. This improves the
modularity of GoNet’s code, as well as its readability
and concurrency.

int insert_frag(/* ... */) {

/* additional fragment processing */

list_add(&pkb->pk_list, pos);

return 0;

frag_drop:

free_pkb(pkb);

return -1;

}

ipr.fragBuf[bufID] <- b

Dealing With Completed Fragments The fol-
lowing code segments underscore the advantages that
CSP style and the Go language provide over current
C stacks. Tapip has to deal with fragmented packets
before it can move on to subsequent packets. This
introduces a variety of problems. For example, it
forces the C IP implementation to track the states
of all of the ongoing fragment reassemblies at the
same time. This encourages the use of possibly com-
plicated global variables and structures, and makes
thread synchronization difficult. In contrast, GoNet
spawns a separate fragment assembler goroutine for
each new fragmented IP packet that it receives. Each

goroutine is responsible for all of the separate frag-
ments that make up the IP segment. After the frag-
ment assembler finishes assembling the packet, it sim-
ply sends the reassembled segment back into process-
ing. This process is completely independent of the
main IP packet processing goroutines, and hence al-
lows for concurrency and parallelism, as well as far
more readable, understandable, and clean code.

if (complete_frag(frag))

pkb = reass_frag(frag);

else pkb = NULL;

return pkb;

struct pkbuf *reass_frag(

struct fragment *frag) {

/* more processing */

delete_frag(frag);

return pkb;

}

ipr.incomingPackets <- append(

fullPacketHdr, payload...)

done <- true

Fragmentation Cleanup Both stacks have to
delete an entry from a data structure. The data
structure tracks channels for Go and defragmenta-
tion structures for tapip. In addition, tapip has to
explicitly free the memory allocated for each frag-
mented packet buffer, as well as the memory from
the defragmentation structure as well.

struct pkbuf *pkb;

list_del(&frag->frag_list);

while (!list_empty(&frag->frag_pkb)) {

pkb = frag_head_pkb(frag);

list_del(&pkb->pk_list);

free_pkb(pkb);

}

free(frag);

delete(ipr.fragBuf, bufID)

7

4.3 Performance Comparison

The latency and throughput of both the C stack and
GoNet were measured and compared.

4.3.1 Latency

The trends of the latency test results can be seen in
Figure 3. The drop rates of both stacks were negligi-
ble. With 1 ping, tapip outperformed GoNet by over
three times with a latency of 0.074 ms when com-
pared to GoNet’s latency of 0.234 ms. However, with
1000 concurrent pings, GoNet outperformed tapip by
almost five times with a latency of 0.717 ms when
compares to tapip’s latency of 3.279 ms. GoNet be-
gins to outperform tapip when the number of con-
current connections becomes greater than about 600.
GoNet’s latency grows linearly, while tapip’s latency
to grow exponentially. GoNet’s latency trend is supe-
rior to tapip’s latency trend, because at low numbers
of concurrent pings, the latencies of both stacks are
small enough to be negligible, but at higher numbers
of concurrent pings, the absolute difference in latency
is much larger.

Figure 3: This graph displays the latency of both
GoNet and tapip by the number of concurrent pings.

Based on these results, it can be inferred that tapip
can process a small number of packets very fast, while

it is slower with processing larger numbers of pack-
ets. This is likely because it is not as concurrent
as GoNet. In contrast, GoNet takes a longer time
to process each packet, but is mostly unaffected by
increased load, likely because of the degree of con-
currency within the implementations of each proto-
col. This can be seen in Figure 3, as tapip’s latency
grows much faster than GoNet’s, even though it be-
gins with much lower latency.
The sharp increase in the latency of tapip also sup-

ports this explanation of the results. After about
800 concurrent connections, tapip becomes unable to
field each set of pings requests before the next set is
sent by the concurrent ping connections, and hence
a backlog of ping requests develops. This causes a
delay in the response to all of the pings, and cause a
sharp growth in tapip’s latency. Since tapip does not
drop any packets, it is not possible that it is dropping
packets because of a full buffer.
This sharp increase in tapip’s response times high-

lights the underlying problem with its architecture,
and the architecture of many other networks stacks
as well: processing a single packet at all layers before
moving onto a new packet is suboptimal, as it can
not scale or achieve parallelism effectively.

4.3.2 Throughput

The results of the throughput test can be seen in
Figure 4. With 1 concurrent connection, GoNet out-
performed tapip with a throughput of 7.3 Mbit/s
when compared to tapip’s throughput of 4.6 Mbit/s.
With 100 connections, GoNet outperformed tapip
with a throughput of 284.9 Mbit/s when compared
to tapip’s throughput of 195.0 Mbit/s. In addition,
GoNet’s throughput increases at a faster rate than
tapip’s throughput. This shows that GoNet can con-
tinue to scale for even larger numbers of connections,
while tapip may not be able to handle such load.
These results make sense given the architecture of

GoNet. All of the TCBs in tapip are managed by
a single thread. In contrast, each TCB in GoNet
has two threads managing it: one for each half of
the duplex connection. In this way, GoNet is able to
efficiently multiplex a large number of connections
onto a limited number of cores more efficiently than

8

Figure 4: This graph displays the throughput of both
GoNet and tapip by the number of concurrent TCP
connections.

tapip. Hence, it achieves far greater throughput for
large numbers of connections. With small numbers
of connections, GoNet is still slightly more efficient,
as GoNet splits the work of the TCB among two
goroutines, while tapip has one thread performing
processing. GoNet outperforms tapip for all numbers
of concurrent connections.

5 Conclusions

The operating system kernel is important for man-
aging a computer system’s resources. Therefore, the
kernel needs to be well designed in order to support
the rest of the operating system properly. Modern
kernels are written in lower level languages such as C,
which allow several classes of bugs to occur; writing a
kernel in a higher level language can eliminate several
of these. However, higher level languages have their
own downsides. The network stack, a kernel subsys-
tem, was built in Go to demonstrate the advantages
of a kernel written in a higher-level language. GoNet
and tapip both operate on the tap interface. Both
network stacks also implement similar protocols such
as Ethernet, IPv4, ARP, UDP, and TCP. The net-

work stack that was built in Go, called GoNet, per-
forms competitively against a similar network stack
written in C, called tapip.
GoNet’s code was simpler than that of the C stack,

as demonstrated in the IP fragment reassembler code
comparison. GoNet, which was built with the CSP
style, could simplify and modularize in a more ef-
fective way than the C stack. This also allowed for
increased concurrency and parallelism, and helped
improve the performance of GoNet. In latency tests,
GoNet achieved lower latency than tapip for numbers
of connections greater than about 600. In through-
put testing, its parallelism allowed it to outperform
tapip for all numbers of concurrent TCP connections
ranging from 1 to 100.
However, there are possible sources of error in the

tests. For example, tapip is not a mainstream net-
work stack, and may have room for optimization.
Also, the Linux kernel might have scheduled each run
of the test differently, which would lead to variation
in the results. In addition, the latency test results for
both GoNet and tapip could have been limited by the
speed of the tap interface that the packets were sent
and received on. There also could be other external
variables that are unaccounted for that could affect
the results of either test.
There are also alternate explanations for the re-

sults of the tests. For latency, unforeseen uncon-
trolled variables may have caused tapip to slow for
larger numbers of connections. In addition, tapip
leaks memory by not freeing the memory before
deleting references to it. For high numbers of concur-
rent ping connections in the latency test, the higher
memory usage of tapip could increase the overhead
of tracking allocated blocks of memory and slow the
overall program. These possibilities are unlikely as
they would have caused a more gradual deterioration
in tapip’s performance rather than the more sudden
drop.
This experimentation shows that a kernel subsys-

tem written in Go with CSP style can improve read-
ability, modularity, concurrency, reliability, and sta-
bility without significantly affecting performance ad-
versely. This shows that the Go language with CSP
style is a viable alternative to the C language for
kernel implementations.

9

5.1 Future Work

This project can be expanded in many different di-
rections. Possible directions:

• Support could be added for IPv6 in both the
transport layer protocols and the network layer
protocols [6]. This would simply make GoNet
more applicable in different environments.

• A socket API could be built on top of the exist-
ing stack, as this would allow application layer
protocols to be built on top of GoNet, extend the
functionality of the current stack’s implementa-
tion, and make the stack POSIX compliant.

• The application layer protocols, which are pro-
tocols that run on top of UDP, TCP, and other
transport layer protocols, could be implemented.
Some possible protocols include Secure Shell
(SSH), Telnet, the Hypertext Transfer Proto-
col (HTTP), the File Transfer Protocol (FTP),
the Domain Name Service (DNS), and the Net-
work Time Protocol (NTP). Implementing these
protocols would allow GoNet to become more
functional to end users, and hence could become
more ready for use as a user-space alternative to
the system network stack.

• More detailed CPU and memory profiling could
be done to find and remove any bottlenecks in
GoNet. Also, race detection and memory ana-
lyzers could be used to find any additional prob-
lems in GoNet.

• Additional performance metrics could be devel-
oped in order to better understand the differ-
ences of the two stacks.

• Implement other kernel subsystems with the
eventual goal of implementing the entire kernel
in Go. Moving GoNet into kernel space would
also allow for testing when compared to a wider
variety of network stacks, as it would become
comparable to a wider variety of kernels. In
addition, the other kernel subsystems could be
compared in the subsystem’s proper metric, giv-
ing a more holistic view of the advantages and
disadvantages of Go with CSP Style.

References

[1] H. Sutter, “The free lunch is over: a fundamen-
tal turn toward concurrency in software,” Dr.
Dobbs Journal, vol. 30, no. 3, Mar. 2005. [On-
line]. Available: http://www.drdobbs.com/
web - development / a - fundamental - turn -

toward-concurrency-in/184405990.

[2] Mirage tcp/ip, MirageOS, Sep. 2015. [Online].
Available: https://mirage.io/.

[3] T. Wuff, Pycorn, Nov. 2012. [Online]. Avail-
able: https : / / github . com / tornewuff /

pycorn.

[4] C. A. R. Hoare, “Communicating sequential
processes,” in, J. Davies, Ed. Prentice Hall In-
ternational, Jun. 2004, p. 207. [Online]. Avail-
able: http://www.usingcsp.com/cspbook.
pdf.

[5] R. Hudson, “Go gc: latency problem solved,”
Google, Jul. 2015. [Online]. Available: https:
//talks.golang.org/2015/go-gc.pdf.

[6] O. Jacobsen and D. Lynch, A glossary of
networking terms, RFC 1208, Internet Engi-
neering Task Force, 1991. [Online]. Available:
http://www.ietf.org/rfc/rfc1208.txt.

[7] D. C. Plummer, An ethernet address resolution
protocol, RFC 826 (Internet Standard), Inter-
net Engineering Task Force, Nov. 1982. [On-
line]. Available: http://www.ietf.org/rfc/
rfc826.txt.

[8] J. Postel, Internet protocol, RFC 791 (Internet
Standard), Internet Engineering Task Force,
Sep. 1981. [Online]. Available: http://www.
ietf.org/rfc/rfc826.txt.

[9] J. Postel, Transmission control protocol, RFC
793 (Internet Standard), Internet Engineer-
ing Task Force, Sep. 1981. [Online]. Available:
http://www.ietf.org/rfc/rfc793.txt.

[10] X. Wang, Tapip, Nov. 2013. [Online]. Avail-
able: https://github.com/chobits/tapip.

10

