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Abstract

An important and ongoing topic of research is the study of infectious diseases and the speed

at which these diseases spread. Modeling the spread and growth of such diseases leads to a more

precise understanding of the phenomenon and accurate predictions of spread in real life. We con-

sider a long-range infection model on an infinite regular binary tree. Given a spreading coefficient

α > 1, the time it takes for the infection to travel from one node to another node below it is expo-

nentially distributed with specific rate functions such as 2−kk−α or 1
αk

, where k is the difference in

layer number between the two nodes. We simulate and analyze the time needed for the infection to

reach layer m or below starting from the root node. The resulting time is recorded and graphed for

different values of α and m. Finally, we prove rigorous lower and upper bounds for the infection

time, both of which are approximately logarithmic with respect to m. The same techniques and

results are valid for other regular d-ary trees, in which each node has exactly d children where

d > 2.
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1 Introduction

The spread of infection over certain data structures has been studied and modeled extensively.

The growth pattern and time of spreading over a one-dimensional percolation model are investi-

gated in [1] and [2]. The results established in these papers are extended to the d-dimensional

lattice Zd in [3]. In [3], infection times are independent exponential distributions with rates that

are dependent on the distance between lattice points.

However, there are still a number of other areas that have not been researched, particularly

pertaining to variations in graphical data structures and distributions of infection time. This project

answers some of these problems by extending the investigation to a structure with homogeneity and

ordering, namely a perfect directed binary tree. A binary tree is chosen because it is the simplest

symmetrical tree to operate on, in comparison with ternary trees and other n-ary trees. However,

the same methods and results can be applied to any regular n-ary trees. In addition, the condition

of perfection, or the requirement that each node has exactly two child nodes, is used in order to

create homogeneity: at layer m, there are 2m nodes. For the spreading time of the disease, an

exponential distribution with a rate based on distance is also chosen, in order to derive a result that

is an extension of [3].

The problem is about the spread of an infection on a binary tree. The nodes are the “people”,

or in a more general term, the hosts of the disease. The infection starts at the root node and jumps

from any initial node to any other node in a binary tree with the initial node as the root. Thus, each

node has a chance to be infected at any given step, with nodes that are farther away having less of

a risk. As stated above, the time it takes to infect between two nodes is given by an exponential

distribution with rate as a function of the distance. With this model, we propose a general question

to be answered: Given a previously-defined coefficient of expansion α (which affects the rate of the

exponential distribution) and a destination layer m, what are some strong upper and lower bounds

for the amount of time it takes for the infection to reach layer m or below, given that m is very

large?
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The spread of certain objects or ideas, such as an infectious disease or an interesting fact, is an

important topic in today’s world. The rapid increase in usage of the Internet is causing an increase

of information transfer. It is possible to model this transfer with the stated binary tree model,

treating information as an infection.

In addition, with the growing concern over various potent diseases, the investigation of the

spread of diseases is of paramount importance. The mathematical model addresses this question.

Indeed, by finding the approximate time of infection, we will predict the actual time in reality and

take action to quarantine the disease or slow the disease’s spread.

Because the number of nodes on each layer of the tree increases exponentially, we hypothesize

that the lower and upper bounds on time would both be of the form c1 ln(m) + c2, where c1 and c2

are arbitrary constants.

2 Methods and Techniques

2.1 The Model

Consider the infinite directed binary tree T . Using σ to denote any node of T , we define |σ|

as the layer that σ is on, which is conventional notation by [6]. The definition of the layer of σ is

the number of edges in the shortest path from the root node ∅ to σ. As a result, the root node is

considered to be on layer 0. We also consider the rate function

r(k) :=
1

2kkα
(1)

where α > 1 is a pre-determined constant and k > 1 is the difference in layer number between

the two nodes. (We will investigate an alternative rate function later on in section 5.)The infection

model is given by a random weighted graph, where each node is in T . The edges of T are 〈σ0, σ1〉

where σ0, σ1 are arbitrary nodes and σ1 is in the sub-tree of σ0. This definition generalizes the

conventional edges of a binary tree. The time ωσ0,σ1 to cross the edge 〈σ0, σ1〉 is an exponentially
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distributed random variable with rate r(|σ1| − |σ0|) and is independent for all edges. Because the

mean of an exponential random variable is the reciprocal of its rate, a higher α means that the

infection will spread slower.

The rate function in equation (1) is specifically chosen to simplify calculations. For any fixed

node σ0, there are exactly 2m−|σ0| nodes that are on layer m and in the subtree of σ0 for m >

|σ0|. Iterating m from |σ0| to ∞, we know that the sum of the rates for the stated nodes will be∑∞
m>|σ0| 2

m−|σ0|r(m − |σ0|) =
∑∞

m>|σ0|
1

(m−|σ0|)α . The finiteness of the total rate is necessary for

the model to be well-defined. Otherwise, instantaneous infection will occur, as shown below.

At time 0 only the root ∅ is infected. Given a path P = (σ0, σ1, . . . , σk), with the requirement

that σi+1 is in the sub-tree of σi as stated above, the time associated with the path is T (P ) =∑k
i=1 ωσi−1,σi . The time to reach a node σ 6= ∅ is given by

T (∅, σ) := inf
P∈P

T (P )

where Pσ is the collection of all paths P such that σ0 = ∅, inf denotes infimum, and σk = σ. The

time to reach layer m or below is given by

Tm := inf
σ:|σ|>m

T (∅, σ).

We want to understand the growth rate and limiting behavior of Tm as m→∞ for different values

of α. We do so by bounding Tm as a function of m.

Note that ∑
σ∈T \∅

r(|σ|) =
∞∑
k=1

2kr(k) =
∞∑
k=1

1

kα
<∞

only when α > 1. Thus we will take α > 1, to ensure non-instantaneous growth of infection.
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2.2 Algorithm and Simulation

A simulation is used to give an approximation of the bounds. The algorithm is implemented

using MATLAB. The binary tree is given as a vector, with each node index pointing to the node

directly above it. Because each node has a probability to be infected based on an exponential

random distribution, we use the properties of such a distribution to make our work easier. The

algorithm works as follows: at each step, an infected node σinf is randomly chosen. From this, a

time is generated from an exponential random variable with a rate equal to the total rate of each

node that can be infected from σinf . After this is done, a new node, the one that will be infected

next, is selected. If the infected node is at layer m or below, the program stops. In the program, a

slightly different rate function of r0(k) = 2−k((k1−α − (k+ 1)1−α) is used to make the simulation

faster. The ratio of r0(k)
r(k)

approaches α− 1 as k grows large for any α.

2.3 Proof Techniques for Lower and Upper Bounds

By finding the moment generating function (MGF) of an exponential random variable and

using Markov’s Inequality, we bound the probability that the infection time Tm is lower than a

certain time. Given any path P , we write T (P ) as a sum of exponential random variables with

arbitrary rates. Since the time T (∅, σ) is the infimum of all possible paths P ∈ P , and each

T (P ) is the sum of exponential random variables with arbitrary rates, we use union bounds and

concentration properties for T (P ) to get a lower bound for T (∅, σ). For the upper bound on time,

we prove that the time it takes for all nodes at layer k to be infected is ck, and then bound the time

that it takes from the infection to travel from layer k to layer m, also using Markov’s Inequality.

There are five properties of an exponential random variable that are used to understand the

distribution and help prove the bounds.

Lemma 2.1. We have the following:

(a) The cumulative distribution function (CDF) of an exponential distribution with rate r is 1 −

e−rx, x > 0.
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(b) If X ∼ Exp(r), where Exp(r) denotes an exponential random variable with rate r, then

P(X > x+ y|X > y) = P(X > x) for any x, y > 0.

(c) (Minimum Property) If X1, X2, . . . , Xn, are independent exponential random variables with

rates r1, r2, . . . , rn, respectively, then X = min(X1, X2, . . . , Xn) is an exponential random

variable with rate r1 + r2 + · · ·+ rn.

(d) (Location of the Minimum) If X1, X2, . . . , Xn, are independent exponential random vari-

ables with rates r1, r2, . . . , rn, respectively, then the probability that Xi is the minimum of

X1, X2, . . . , Xn is ri/(r1 + r2 + · · ·+ rn). In other words,

P(Xi = min(X1, X2, . . . , Xn)) =
ri

r1 + r2 + · · ·+ rn
.

(e) If X is an exponential random variable with rate 1, then X
r

is an exponential random variable

with rate r.

Proofs of these properties are found in [5].

3 Proof of Lower and Upper Bounds

Consider the infection model on a binary tree defined in section 2.1 with rate function r(k) =

2−kk−α for some α > 1. Define Tm as the time needed for the infection to reach layer m or below

starting from the root node ∅.

Theorem 3.1. (Lower Bound) For any ε > 0, we have

P(Tm ≥
α− 1

c
ln(m− 1)− 1

c
ln((cε)−1e ln(m− 1))) ≥ 1− ε

where c = 2αζ(α) and ζ(α) is the Riemann zeta function.
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Theorem 3.2. (Upper Bound) Using the binary tree spreading method defined in section 2.1, the

procedures described in section 2.3, and Tm as defined in theorem 3.1, we have that

P(Tm ≤
c(α− 1)

ln 2
lnm+ c log2

e(α− 1) ln 2

c
) > 1− ((2ce1−c)k + e−crtotal/ ln 2)

where c > 3, k = log2((α− 1) ln 2 ·mα−1)− log2 c, and rtotal =
2k(m−k−1)−α+1

α−1 .

First, we establish a few well-known results.

Definition 3.3 (Moment Generating Function). The MGF of a random variable X is defined as

MX(t) = E[etX ], where E denotes the expected value.

This is a widely-known definition and is found in [5].

Lemma 3.4. The MGF of an exponential random variable X with rate r is MX(t) = r
r−t for

t < r.

Proof. We have

MX(t) = E[e
tX ] =

∫ ∞
−∞

etx · re−rxdx = r

∫ ∞
0

e(t−r)xdx = r

[
1

t− r
e(t−r)x

]∣∣∣∣∞
0

=
r

r − t
.

Note that t < r, otherwise the integral evaluates to infinity. �

Lemma 3.5. The MGF of the sum of two random variables X and Y is MX+Y (t) = MX(t) ·

MY (t).

A proof of this lemma is found in [5].

Lemma 3.6. (Markov’s Inequality) For any random variableW that takes on non-negative values,

we have P(W > n) ≤ E(W )/n.

A proof of this lemma is found in [5].

Corollary 3.7. For any random variable Y that takes on non-negative values, we have that P(Y <

t) ≤ estMY (−s) and P(Y > t) ≤ e−stMY (s).
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Proof. By letting W = e∓sY and n = e∓st in lemma 3.6, we get

P(Y < t) = P(−sY > −st) = P(e−sY > e−st) ≤ estMY (−s)

P(Y > t) = P(sY > st) = P(esY > est) ≤ e−stMY (s)

under the condition that t > 0. �

Lemma 3.8. For any positive integer `, we have

e−`+1``+
1
2 ≥ `!.

Proof. The inequality follows trivially for ` = 1. For ` ≥ 2, we have

√
2πe

1
12`
−1 ≤

√
2πe

1
24
−1 ≈ 0.961 ≤ 1

and thus
√
2πe

1
12`
−```+

1
2 ≤ e−`+1``+

1
2 .

Thus, the inequality is reduced to `! ≤
√
2πe

1
12`
−```+

1
2 for all ` ≥ 2 (see [4] for a proof). �

Lemma 3.9. Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) exponential

random variables with rate 1. Define Y := X1

r1
+ X2

r2
+ · · ·+ Xn

rn
. Then we have that

P
(X1

r1
+
X2

r2
+ · · ·+ Xn

rn
≤ t
)
≤
(et
n

)n n∏
i=1

ri.

Proof. Using corollary 3.7, lemma 2.1(e) and lemma 3.4, we have that

P(Y < t) ≤ estMY (−s) = est
n∏
i=1

MXi
ri

(−s)

= est
n∏
i=1

ri
ri + s

≤ est
n∏
i=1

ri
s
= ests−n

n∏
i=1

ri.

7



Since s can take on any real number greater than 0, the quantity above needs to be minimized as to

make the inequality the strongest. Hence, we need to solve

d

ds
(ests−n) = est(ts−n − ns−n−1) = 0 =⇒ s =

n

t
.

Thus, we have

P
(X1

r1
+
X2

r2
+ · · ·+ Xn

rn
≤ t
)
≤
(et
n

)n n∏
i=1

ri,

which was to be proved. �

Lemma 3.10. Let X1, X2, . . . , Xk be i.i.d. exponential random variables with rate 1. Then, given

that k < t,

P(X1 +X2 + · · ·+Xk ≥ t) ≤ e−t
(et
k

)k
.

Proof. Using corollary 3.7, lemma 2.1(e) and lemma 3.4, we have that

P(X1 +X2 + · · ·+Xk ≥ t) ≤ e−stMX1+X2+···+Xk(s) = e−st
k∏
i=1

1

1− s
= e−st(1− s)−k.

As with the proof of the lower bound, we find the value of s to minimize the right-hand side of the

inequality, which is equivalent to setting the derivative with respect to s to 0:

d

ds
(e−st(1− s)−k) = e−st(−t(1− s)−k + k(1− s)−k−1) = 0 =⇒ s = 1− k

t
.

Substituting s, we have that

P(X1 +X2 + · · ·+Xk ≥ t) ≤ ek−t
(k
t

)−k
= e−t

(et
k

)k
which was to be proved. �
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Lemma 3.11. (Union Bound) Given any events A1, A2, . . . , Ai, we have that

P
(⋃

i

Ai

)
≤
∑
i

P(Ai).

A proof of this lemma is found in [5].

With these facts, we begin proving the main theorems.

Proof of Theorem 3.1. From now on, define σ0 = ∅ and σi < σj to mean that |σi| < |σj| (recall

that |σ| denotes the layer of σ) and σj is in the sub-tree of σi. This is conventional notation by [6].

Note that

P(Tm ≤ t) = P
(

inf
σ:|σ|>m

T (∅, σ) ≤ t
)
= P

( ⋃
σ:|σ|>m

T (∅, σ) ≤ t
)

≤
∑

σ:|σ|>m

P(T (∅, σ) ≤ t) =
∑

σ:|σ|>m

P
(

inf
P∈Pσ

T (P ) ≤ t
)
.

The inequality is derived from lemma 3.11, where eachAi is equivalent to T (∅, σ) ≤ t. In addition,

because each path inPσ can be described as a set of nodes (σ0, σ1, . . . , σk) with σ0 = ∅ and σk = σ,

we get that

∑
σ:|σ|>m

P
(

inf
P∈Pσ

T (P ) ≤ t
)
=

∑
σ:|σ|>m

P
( ⋃
P∈Pσ

T (P ) ≤ t
)
≤

∑
σ:|σ|>m

∑
P∈Pσ

P(T (P ) ≤ t)

=
∞∑
k=m

m∑
`=1

∑
σ1<σ2<···<σ`:|σ`|=k,|σ`−1|<m

P(T (P ) ≤ t)

≤
∞∑
k=m

m∑
`=1

∑
σ1<σ2<···<σ`:|σ`|=k,|σ`−1|<m

(
et

`

)` ∏̀
i=1

r(|σi| − |σi−1|).

The first inequality follows from lemma 3.11, while the second inequality follows from lemma 3.9.

Thus, we have to find an upper bound for

∞∑
k=m

m∑
`=1

∑
σ1<σ2<···<σ`:|σ`|=k,|σ`−1|<m

(
et

`

)` ∏̀
i=1

r(|σi| − |σi−1|).
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If we choose t = tm as a function of m such that the upper bound of this quantity is converging

to 0 as m→∞, then Tm ≥ tm with high probability.

Define s(n) := 2nr(n), n ≥ 1 and

f`(n) :=
∑

σ1<σ2<···<σ`:|σ`|=n

∏̀
i=1

r(|σi| − |σi−1|). (2)

Notice that definition (2) requires that n ≥ `, because if n < `, then ` nodes would be on `− 1 or

fewer layers, contradiction. Moreover, we have

f`(n) =
n−1∑
k=`−1

∑
σ1<σ2<···<σ`−1:|σ`−1|=k

`−1∏
i=1

r(|σi| − |σi−1|)
∑

σ`−1<σ`

r(|σ`| − |σ`−1|)

=
n−1∑
k=`−1

∑
σ1<σ2<···<σ`−1:|σ`−1|=k

`−1∏
i=1

r(|σi| − |σi−1|) · 2n−k · r(n− k)

=
n−1∑
k=`−1

s(n− k)
∑

σ1<σ2<···<σ`−1:|σ`−1|=k

`−1∏
i=1

r(|σi| − |σi−1|)

=
n−1∑
k=`−1

s(n− k)f`−1(k).

We have to bound

P(Tm ≤ t) ≤
m∑
`=1

(
et

`

)` ∞∑
k=m

f`(k).

We recall that s(n) = 2nr(n) ≤ n−α for k ≥ 1 and thus, f1(n) = s(n) ≤ n−α. Now, we will prove

that

f`(n) ≤ 2α(`−1)ζ(α)`−1n−α for all ` ≥ 1 (3)

by induction. We have already shown this for ` = 1. Suppose the inequality (3) holds for all
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` ≤ p− 1. For ` = p, we have

fp(n) =
n−1∑
k=p−1

s(n− k)fp−1(k)

≤
n−1∑
k=p−1

(n− k)−α · 2α(p−2)ζ(α)p−2k−α

= 2α(p−2)ζ(α)p−2
n−1∑
k=p−1

k−α(n− k)−α.

Now,

n−1∑
k=`−1

k−α(n− k)−α = n−α
n−1∑
k=`−1

(
1

k
+

1

n− k

)α
.

Using the fact that (x+ y)α ≤ 2α−1(xα + yα) for any α ≥ 1, x, y > 0, we have

n−α
n−1∑
k=`−1

(
1

k
+

1

n− k

)α
≤ n−α

n−1∑
k=`−1

2α−1
(

1

kα
+

1

(n− k)α

)
≤ n−α2αζ(α).

Combining, we have

fp(n) ≤ 2α(p−2)ζ(α)p−2
n−1∑
k=p−1

k−α(n− k)−α ≤ 2α(p−1)ζ(α)p−1n−α,

proving inequality (3).

Using inequality (3), we have

P(Tm ≤ t) ≤
m∑
`=1

(
et

`

)` ∞∑
k=m

f`(k) ≤
m∑
`=1

(
et

`

)` ∞∑
k=m

2α(`−1)ζ(α)`−1k−α

≤
m∑
`=1

(
et

`

)`
2α(`−1)ζ(α)`−1

∞∑
k=m

k−α. (4)
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The two summations are independent, so we calculate them individually:

∞∑
k=m

k−α ≤
∫ ∞
m−1

x−αdx =
(m− 1)−α+1

α− 1
. (5)

In addition, by lemma 3.8, we have

(e
`

)`
≤ e√

`(`− 1)!
≤ e

(`− 1)!
for ` ≥ 1.

Thus,

m∑
`=1

(
et

`

)`
2α(`−1)ζ(α)`−1 ≤

m∑
`=1

(t2αζ(α))`−1 · et

(`− 1)!
≤ tet2

αζ(α)+1, (6)

where in the second inequality we used the fact that
∑∞

`=1
x`−1

(`−1)! = ex for any x > 0. Inserting

inequalities (5) and (6) into (4), we get

P(Tm ≤ t) ≤ et

α− 1
· et2

αζ(α)

(m− 1)α−1
.

Given any ε ∈ (0, 1), we solve for

et

α− 1
· et2

αζ(α)

(m− 1)α−1
≤ ε

to get

tet2
αζ(α) ≤ ε(m− 1)α−1(α− 1)e−1

or t ≤ (α− 1) ln(m− 1)− ln(et/(α− 1)ε)

2αζ(α)
.

Define c := 2αζ(α) and

tm :=
α− 1

c
ln(m− 1)− 1

c
ln((cε)−1e ln(m− 1)).
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Then we have tmetm2αζ(α) ≤ ε(m− 1)α−1(α− 1)e−1 and

P(Tm ≥ tm) > 1− ε or lim inf
Tm

log(m− 1)
≥ 1

c
with high probability.

This completes the proof. �

We now examine the upper bound for the time Tm.

Proof of Theorem 3.2. Redefine k as a layer number such that 0 ≤ k � m. We first prove that all

2k nodes in layer k are infected by time ck for some constant c > 0. Let σ1, σ2, . . . , σ2k be all the

nodes in layer k. We have

P( max
1≤i≤2k

T (∅, σi) ≥ t) ≤
2k∑
i=1

P(T (∅, σi) ≥ t)

= 2k P(T (∅, σi) ≥ t) ≤ 2k P(X1 +X2 + · · ·+Xk ≥ t),

where all Xi’s are i.i.d. exponential random variables with rate r(1) = 1. The first inequality is

derived from lemma 3.11. The second inequality comes from the fact that if P(T (∅, σi) ≥ t), then

X1 +X2 + · · ·+Xk ≥ t is true, but not the converse. By lemma 3.10, we have that

P( max
1≤i≤2k

T (∅, vi) ≥ t) ≤ e−t
(2et
k

)k
.

For t = ck, the right-hand side equals (2ce1−c)k. We choose 2ce1−c < 1, or c > 2.67835, so that

P( max
1≤i≤2k

T (∅, vi) ≥ ck) ≤ (2ce1−c)k → 0 as k →∞.

Notice that the condition t > k for lemma 3.10 is followed because t = ck and ck > k.

Now, we perform the following procedure: by iterating k from layer 1 to layer m, and finding

an upper bound on the amount of time it takes for the infection to travel from layer k to layer m

using one jump, we find the minimum total time over all possible values of k and use this as the
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upper bound for Tm.

On average, the infection route that takes the longest amount of time from one node to a given

node is the route that goes directly to the node. We know this because the mean of an exponential

distribution is the reciprocal of the rate function. Note that for any x, y ∈ Z and x ≤ y, given any

of the 2k paths from a node on layer k to a node on layer n,

xα + 2y−xyα ≤ 2y(x+ y)α (7)

=⇒ 2xxα + 2yyα ≤ 2x+y(x+ y)α

=⇒ 1

r(x)
+

1

r(y)
≤ 1

r(x+ y)
. (8)

Inequality (7) follows from adding the inequalities xα + yα ≤ (x + y)α and (2y−x − 1)yα ≤

(2y − 1)(x+ y)α.

Now, inequality (8) implies that the mean time that it takes for the infection to travel from a

starting node to an intermediate node to a final node is less than the mean time for the infection to

travel directly from a starting node to a final node. In other words, given a starting node at layer n

and a final node below it at layer n+x+ y, the infection takes more time, on average, to infect the

final node directly than to infect an intermediate node at layer n + x and then the final node. We

will thus find an upper bound on this value.

We define

Lk,m := min
|σ0|=k,|σ1|≥m,σ1<σ0

ωσ0,σ1 .

We use the minimum property established in lemma 2.1 to show that Lk,m is an exponential distri-

bution with rate rtotal. Because any node on layer k can directly infect 2n−k different nodes at layer

n through a one-jump procedure, and because there are 2k nodes on layer k, we have

rtotal = 2k
∞∑
n=m

2n−kr(n− k) = 2k
∞∑
n=m

(n− k)−α

≤ 2k
∫ ∞
m−k−1

`−αd` =
2k(m− k − 1)−α+1

α− 1
.
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The mean of Lk,m is the reciprocal of rtotal, or (α − 1)2−k(m − k − 1)α−1. Thus, the total

infection time max1≤i≤2k T (∅, vi) + Lk,m is of the order

t(k) = ck + (α− 1)2−k(m− k − 1)α−1 ≤ ck + (α− 1)2−kmα−1,

because k � m. Then to minimize infection time to get a strong upper bound, we take

t′(k) = c+ (α− 1)2−k(− ln 2)mα−1 = 0 or k = log2((α− 1) ln 2 ·mα−1)− log2 c,

so that

t(k) = c log2
e(α− 1) ln 2 ·mα−1

c
= c log2

e(α− 1) ln 2

c
+
c(α− 1)

ln 2
lnm.

Finally, we use the result that

P( max
1≤i≤2k

T (∅, vi) + Lk,m ≥ ck + y) ≤ P( max
1≤i≤2k

T (∅, vi) ≥ ck) + P(Lk,m ≥ y)

≤ (2ce1−c)k + e−yrtotal

for y = (α− 1)2−kmα−1 = c
ln 2

to complete the proof. �
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4 Illustrations

Figure 1: A binary tree with layers labeled and root node infected

Figure 2: Simulation with α = 2,m = 500, and 1000 trials
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Figure 3: Regression graph for α = 1.5, m taking on all values in de0.05xe for x ∈ Z and

1 ≤ x ≤ 120, and 500 trials per value of x.

Figure 1 is a conventional, un-directed binary tree. Figures 2 and 3 are produced in MATLAB for

the purpose of simulating the spreading algorithm. Figure 2 plots the number of occurences of

time t in a histogram. The shape of the outline of the histogram is approximately normal. Figure

3 plots the values of m vs. t, ln(m) vs. t, and ln(m) vs. ln(t). The line for ln(m) vs. t is more

linear than ln(m) vs. ln(t), indicating the accuracy of the model which predicts that the time is a

constant multiplied by ln(m).

5 New Rates

We investigate the case where

r(k) =
1

bk

with b > 2.

17



Theorem 5.1. We claim that if

tm =
m

4

(
ln
b

2

)2
− q lnm · ln

√
b

2
,

with q > 1, then P(Tm > tm) approaches unity as m −→∞.

As a corollary, this implies that Tm grows linearly with m.

Proof. The proof is similar to that of theorem 3.2. Using the definitions and notation from this

theorem, we have

f`(n) :=
∑

σ1<σ2<···<σ`:|σ`|=n

∏̀
i=1

r(|σi| − |σi−1|).

Notice that the product evaluates to

∏̀
i=1

r(|σi| − |σi−1|) =
∏̀
i=1

1

b|σi|−|σi−1|
=

1

b|σ`|−|σ0|
=

1

bn
= b−n

Now, we can pick σ` as any of the 2n nodes at layer n. From there, we choose `− 1 out of the

n− 1 remaining nodes for a value of (
n− 1

`− 1

)
As a result,

f`(n) = 2nb−n
(
n− 1

`− 1

)
We must then bound

P(Tm ≤ t) ≤
m∑
`=1

(
et

`

)` ∞∑
k=m

f`(k) =
m∑
`=1

(
et

`

)` ∞∑
k=m

2kb−k
(
k − 1

`− 1

)
.
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We note that

(
k − 1

`− 1

)
=

(k − 1)!

(`− 1)!(k − `)!
=

1

(`− 1)!

`−1∏
i=1

(k − i) ≤ k`−1

(`− 1)!
.

This implies that

P(Tm ≤ t) ≤
m∑
`=1

(
et

`

)` ∞∑
k=m

2kb−k
k`−1

(`− 1)!
.

Now, let c := b
2

and define u, v > 1 such that uv = c. We evaluate the second summation in

the above inequality:

∞∑
k=m

c−k
k`−1

(`− 1)!
=

∞∑
k=m

u−kv−k
k`−1

(`− 1)!

The maximum value of the expression v−kk`−1 is received by simply setting d
dk
(v−kk`−1) = 0,

or

− ln(v)v−kk`−1 + (`− 1)v−kk`−2 = 0

− ln(v)k + (`− 1) = 0

k =
`− 1

ln v
.

However, this only holds when ` > 1. We will separate out the ` = 1 case of the summation.

As a result,

v−
`−1
ln v

(
`− 1

ln v

)`−1
= e1−`

(
`− 1

ln v

)`−1
=

(
`− 1

e ln v

)`−1
Plugging this back into the summation, we get

∞∑
k=m

u−kv−k
k`−1

(`− 1)!
≤

∞∑
k=m

u−k
(
`− 1

e ln v

)`−1
1

(`− 1)!
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for ` 6= 1. Separating out ` = 1 and changing the dummy variable, we have that

P(Tm ≤ t) ≤ et
∞∑
k=m

u−kv−k +
m−1∑
`=1

( et

`+ 1

)`+1
∞∑
k=m

u−ke−`

`!

( `

ln v

)`
Making multiple simplifications, we get that this equals

et
(uv)−m

(1− (uv)−1)
+ et

m−1∑
`=1

( t

ln v

)` ``

(`+ 1)`+1

u−m

(1− u−1)`!

Thus,

P(Tm ≤ t) ≤ et
(uv)−m

(1− (uv)−1)
+ et

m−1∑
`=1

( t

ln v

)` ``

(`+ 1)`+1

u−m

(1− u−1)`!

For the second term, we know that ``

(`+1)`+1 < 1 for ` ≥ 1. We can simplify this as follows:

et
m−1∑
`=1

( t

ln v

)` ``

(`+ 1)`+1

u−m

(1− u−1)`!
≤ et

m−1∑
`=1

( t

ln v

)` u−m

(1− u−1)`!

= et
u−m

(1− u−1)

m−1∑
`=1

( t

ln v

)` 1
`!

The Maclaurin series for ex is simply
∑∞

i=0
xi

i!
. As a result,

et
u−m

(1− u−1)

m−1∑
`=1

( t

ln v

)` 1
`!
≤ et

u−m

(1− u−1)
(et/ ln v − 1)

We now have that

P(Tm ≤ t) ≤ et
(uv)−m

(1− (uv)−1)
+ et

u−m

(1− u−1)
(et/ ln v)

Now,

u−met/ ln v = et/ ln v−m lnu.

Thus, for t = ln v(m lnu − am), this evaluates to e−am . If am ≥ k lnm where k is a constant
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such that k > 1, then we know that the second term in the above inequality approaches 0 as

m −→∞.

Now, we must maximize t in terms of u and v in order to get the best lower bound. Note that

lnu+ ln v = lnuv = ln b
2
, which is constant. As a result, we have, by the AM-GM inequality,

ln b
2

2
=

lnu+ ln v

2
≥
√
lnu ln v

The equality case is achieved (and t is maximized) when u = v =
√

b
2
, leading to

√
lnu ln v =

1
2
ln b

2
. Thus, we have that tm = m

4
(ln b

2
)2− am ln

√
b
2
= m

4
(ln b

2
)2− am ln

√
b
2

where am ≥ k lnm

as defined above. As a result,

lim
m−→∞

P(Tm ≤ tm) = 0

which implies that P(Tm > tm) approaches unity as m −→∞. �

6 Discussion

For a binary tree with rate function r(k) = 2−kk−α, we prove that when tm = α−1
c

ln(m−1)−
1
c
ln((cε)−1e ln(m−1)), then P(Tm ≥ tm) > 1− ε, meaning that the time it takes for the infection

to travel from ∅ to below layer m is greater than tm given a margin of error ε. In addition, for the

upper bound, we prove that t(k) = c log2
e(α−1) ln 2

c
+ c(α−1)

ln 2
lnm. We have bounds for the minimum

and maximum times, both on the order of c1 ln(m)+c2 with c1 constant and c2 essentially constant

compared to ln(m). Because we assume that m is large, these bounds limit the time that it takes

for the infection to reach layer m to a very small margin of error.

We find that the time that it takes for the disease to spread below a certain layer is bounded

logarithmically. Thus, growth is the inverse function of time, or exponential. In this context,

growth means the maximum distance from the root node that is infected after a given time t.

This fact means that near some layer number that is an exponential function of t, there is a high
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probability that at least one node will be infected. It is not possible to conclude the number or

density of infected nodes at a specific layer. On the other hand, an estimate is obtained based on

the nature of the spreading pattern. Indeed, it is very likely that one node will be infected near

layer et. This implies that in a real life setting, after a certain time, the infection will be likely to

spread to at least one person very far from the root node. The infection would also be very sparse

far away from the root and more concentrated as the nodes closer to the root are examined. In other

words, we consider the ratio of the number of infected people to the number of total people (2k) at

a certain layer k. This ratio grows larger as k decreases.

On the other hand, for the case where r(k) = 1
bk

, we prove that when tm = m
4

(
ln b

2

)2
−

q lnm ln
√

b
2
, P(Tm > tm) also approaches 1. As a result, the time it takes for the infection to

travel from ∅ to below layer m is linear on average. As stated above, growth is the inverse function

of time, or also linear.

It was proved in [3] that the bounds for the infection time are highly dependent on the values

for α in the case of an infection model in Zd. Namely, growth is linear if α > 2d+ 1, super-linear

if α ∈ (2d, 2d + 1), exponential if α ∈ (d, 2d), and instantaneous if α < d. In comparison, for

the model of the binary tree, the time that it takes to expand below a certain layer is logarithmic

for all α > 1. A binary tree has approximately 2k+1 nodes a distance of k or less away from the

root node, while in Zd, the approximate number of lattice points a distance k or less away from

the origin of the infection is on the order of kd multiplied by a constant. This fact explains the

difference between the case in Zd and the binary tree. For this reason, these observations enhance

the findings of other studies in the field.

7 Conclusions and Future Work

From our research, we learn for r(k) = 2−kkα, that the lower bound for the time is α−1
c

ln(m−

1) − 1
c
ln((cε)−1e ln(m − 1)). The upper bound for the time is c log2

e(α−1) ln 2
c

+ c(α−1)
ln 2

lnm.

As stated above, both are in the form c1 ln(m) + c2 with c1 constant and c2 essentially constant
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compared to ln(m). This confirms our hypothesis. For the case where r(k) = 1
bk

, we learn that the

time of infection is approximately tm = m
4

(
ln b

2

)2
− lnm ln

√
b
2
. The infection time in this case

is linear on average. In the future, it would be useful to find the approximate density and number

of infections at each layer of the binary tree, along with studying perfect n-ary trees. Optimizing

the algorithm to simulate the infection process is also useful, because with large α, the time that

it takes the algorithm to run is quite large. Improving the algorithm is essential to verifying if the

bounds are correct and replicating the results of the proof. The program will also help formulate a

hypothesis in the general case of n-ary trees, and improving the running time of the algorithm will

streamline this process. Questions that still remain unanswered include the time that it takes for

the infection to spread to a certain layer when the binary tree is not perfect, or in the general case,

an n-ary tree is not perfect. The representation of such a graph will help generalize the bounds

found in this paper.

8 Acknowledgements

I would like to sincerely thank Professor Partha Dey for his guidance and support throughout

this project. I would also like to extend my thanks to Dr. Tanya Khovanova for her overall guidance

on the project and Dr. Slava Gerovitch and the MIT PRIMES-USA program for providing me with

this research opportunity.

23



References

[1] Aizenman, M.; Newman, C. M. Discontinuity of the percolation density in one dimensional
1/|x− y|2 percolation models. Communications in Mathematical Physics 107 (1986), no. 4,
611–647.

[2] Newman, C. M.; Schulman, L. S. One dimensional 1/|j − i|s percolation models: The
existence of a transition for s > 2. Communications in Mathematical Physics 104 (1986),
no. 4, 547–571.

[3] Shirshendu Chatterjee and Partha S. Dey. Multiple Phase Transitions in Long-Range
First-Passage Percolation on Square Lattices. To appear in Communications on Pure and
Applied Mathematics.

[4] William Feller. An Introduction to Probability Theory and Its Applications. Vol. I. John
Wiley & Sons, Inc., New York-London-Sydney, Third edition, 1968.

[5] Sheldon Ross. A First Course in Probability. Macmillan Co., New York; Collier Macmillan
Ltd., London, Second edition, 1984.

[6] Lyons, R.; Peres, Y. Probability on Trees and Networks. 2005.

24


	Introduction
	Methods and Techniques
	The Model
	Algorithm and Simulation
	Proof Techniques for Lower and Upper Bounds

	Proof of Lower and Upper Bounds
	Illustrations
	New Rates
	Discussion
	Conclusions and Future Work
	Acknowledgements

