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Abstract— Disease spread monitoring data often comes with

a significant delay and low geospatial resolution. We aim to

develop a software tool for data collection, which enables daily

monitoring and prediction of the spread of disease in a small

community. We have developed a crowdsourcing application

that collects users’ health statuses and locations. It allows users

to update their daily status online, and, in return, provides

a visual map of geospatial distribution of sick people in a

community, outlining locations with increased disease incidence.

Currently, due to the lack of a large user base, we substi-

tute this information with simulated data, and demonstrate

our program’s capabilities on a hypothetical outbreak. In

addition, we use analytical methods for predicting town-level

disease spread in the future. We model the disease spread

via interpersonal probabilistic interactions on an undirected

social graph. The network structure is based on scale-free

networks integrated with Census data. The epidemic is modeled

using the Susceptible-Infected-Recovered (SIR) model and a

set of parameters, including transmission rate and vaccination

patterns. The developed application will provide better methods
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for early detection of epidemics, identify places with high

concentrations of infected people, and predict localized disease

spread.

INTRODUCTION

The Center for Disease Control provides centralized repos-

itories for data about disease spread in the US. Though well

verified and with much detail, this data has a number of

deficiencies. First, the data is not localized. Analysts and

researchers can see how a disease progresses on a nation-

wide or city-wide level, yet they cannot see how a disease

travels across a more specific area such as a town or a small

village. Besides that, the data that the Center for Disease

Control releases reports of the outbreak with a delay of more

than two weeks. When working towards stopping the spread

of a disease in order to avoid an epidemic, these two factors

are crucial, since localized data can help scientists pinpoint

the source of a disease, and speed of data acquisition can go

towards stopping the disease earlier. In addition, providing

a more detailed forecast will allow individuals monitoring

disease spread in their neighborhood to take corresponding

preventative measures (such as avoidance of crowded spaces)

in a more timely manner. The software suite we created
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works towards providing highly localized data, minimizing

the delay, and having the data available for daily use and

analysis. We have developed an interactive web application,

called Strii, that collects actual data from users on their

disease status—if the person is sick or healthy at the time

of login. Currently, due to a lack of a sufficient user base

in order to obtain real data, we generate simulated data.

The goal of Strii is to use this obtained, or generated,

individual data to create a local-level disease spread map,

to predict the future disease spread in a named city, and to

forecast its spread to nearby cities, all using our software

suite. A user can enter a town of interest, prompting our

program to obtain that town’s census data, analyse it together

with collected health information, and return the currently

observed, past, and predicted future spread of disease in

that town back to the user. The results can be visualized to

provide a better presentation of findings. In addition, our soft-

ware suite provides analysis capability, allowing to estimate

disease spread or containment under different interventions,

different interpersonal interactions, and various severities of

the disease. In our forecasting algorithm, we generate human

networks based on three models: random, small-world, and

scale-free. In these networks, nodes represent people, and

edges represent friendships. To further improve the accuracy

of our model, we use Census data to build a more realistic

representation of a human network and its interactions. We

use the SIR (Susceptible-Infected-Recovered) disease spread

model to predict and visualize the spread of disease given a

number of parameters, including transmission rate and vac-

cination patterns. Our software suite can take in a variety of

parameters, which it then uses to simulate disease to predict

its spread. These parameters include many intrinsic factors,

such as the number of initially infected people, the duration

of the recovery, and even the number of teenagers, who

can be curfewed in order to prevent them from interacting

with infected nodes. Due to the diversity of our parameters

aimed at reflecting actual scenarios, our model, and therefore

simulation, becomes more realistic. The paper is organized

as follows: Chapter 1 describes the forecasting algorithm

that we implemented in order to predict disease spread on a

town level. Chapter 2 discusses parameters that we introduce

in simulations, and the interactive tool that we developed

allowing for analysis of parameters’ influence on disease

spread simulation results. Chapter 3 discusses an approach

for creating crowdsourcing web application for health status

data collection, and the currently developed simulated data

stream that we use in our analysis. Finally, in Chapters 4

and 5 we present the results of our simulations, a set of

visualizations produced by our software tool, and discuss

further steps.

I. MATERIALS & METHODS: DISEASE SPREAD

FORECASTING

A. Network Modelling

The forecasting algorithm involves simulating how the

disease spreads through a sample town. We modeled the

spread of disease through probabilistic contacts on the social

network using the widely accepted SIR model. In order to
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achieve sensible results, it was therefore important to create

a network of people that is realistic. The network represented

of a town where every citizen was a node on an undirected

multigraph, and every friendship was an edge between two

nodes. Although adding people to the graph did not pose a

challenge, the algorithm for interconnecting them was not

trivial. In deciding how to connect the nodes of the multi-

graph, three networks were examined: The Random, Small

World, and Scale-Free Networks. Finally, we augmented the

developed structure with information from Census data about

each individual town in the United States.

1) Random Network: The Random network is assigned a

minimum and maximum amount of friends any specific node

can have. After that, for each node, a random number of

connections between the maximum and minimum is created.

Each node can connect to any other node in the graph

(Barabási and Bonabeau).

2) Small World Network: The Small World Network is

similar to the Random Network; however, in the Small World

network, each nodes is numbered, and every node n can only

befriend nodes in the range n+k and n-k.1 The result is a

network with localized connections. Every person is friends

with only the people in close proximity. The point of this

network was to simulate a large town where people are less

familiar with people who live farther away, i.e., on the other

side of the town (Göpfert and Robert).

1These calculations are done by using the modulus of the total amount

of people in the network, so the first and last nodes in the graph have edges

connecting them to nodes in both ranges n+k and n-k.

3) Scale-Free Network: The Scale-free network is a net-

work constructed using the preferential attachment algorithm

(BarabÃąsi and Bonabeau). N nodes are added to the net-

work one by one. However, every new node is more likely to

befriend older nodes than newer ones. As a result, the older

nodes become "hubs" with large amounts of connections,

and newer nodes obtain only a few connections. This results

in the degree distribution of this network following a power-

law distribution. This network proved to be the most realistic

out of the three, since in most communities, some people are

very well connected and know a lot of people, while others

have less connections, as opposed to the general connectional

equality of the other networks (Göpfert and Robert).

4) Scale-Free Network built using Census Data: In or-

der to make the networks more realistic, the concept of

households and census data was introduced. Census data

of a specific user-entered town was taken from American

Fact Finder, and N nodes were added to the graph where

N stands for the population of that town. After this, using

data on households, the people on the graph are divided

into families and are all interconnected by edges, since

people who live in one family interact very often and are

thus equivalent to "friends" in terms of probabilistic disease

spread. Age data from the Census is also taken into account.

After dividing people into households, ages are distributed

among the family members. This is an often overlooked,

yet vitally important factor, since people of different ages

can be either very susceptible, or very resilient to disease

("A Weekly Influenza Surveillance Report Prepared by the
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Influenza Division"). Finally, when all of the census data is

taken into account, all of the nodes are interconnected using

the scale-free algorithm, in order to simulate friendships.

Fig. 1.1. A random network

Fig. 1.2. A small world network. Note the "local connections" that

characterize the network.

Fig. 1.3. A scale-free network. Note the scale-free characteristic "hubs"

visible on the right side of the network.

II. MATERIALS & METHODS: SIMULATION APPROACH

AND PARAMETER ESTIMATION

In our simulation, disease spread is modeled using the

SIR algorithm. At every time t, each node is in of three

states: Susceptible, Infected, or Recovered. A Susceptible

state means that the node can be infected from a connection,

representing a person that has not been sick yet; an Infected

state means that the node can transmit the infection to

a connected node, representing an infected person that is

contagious; and a Recovered state represents a node that does

not receive or transmit infections, representing a person that

has developed an immunity to the disease. For the purposes

of utilizing this approach, our program’s input consists of

several parameters, such as the probability of being infected

by a friend, the number of days needed to recover from an

infected state (a), or the probability (%) of transmitting the

disease through a connection (n).

4



For each infected person:

1. For each friend, infect that friend

with a probability of n.

2. Add a day to the counter.

3. If the counter is equal to a, set

this person’s state to recovered.

This loop over each person represents a "day" of our

simulation. One simulation ends when when number of

infected people on a given day is equal to 0. Since the

interactions between nodes are probabilistic, we take the

average of many simulations when testing the effect of a

certain parameter. Fig 2-1 shows the difference between one

simulation and 100 simulations. For actual research purposes,

the number of simulations may reach the millions.

A. Parameters

A crucial part of our research was studying the effects

of parameters on the spread of the epidemic, in order to see

how various demographic patterns, types of interactions, and

vaccination strategies affect the outcome. In our software

suite, the user has the ability to alter any of 14 unique

parameters, which will be discussed below.

1) Network Type: Defines type of the graph, which can

be either small-world, random, or scale-free. In the current

simulation we use the scale-free network model, as we found

it to be the most realistic.

2) Number of people: Defines the number of nodes in

the graph. We use Census data downloaded from American

FactFinder as a proxy for network structure.

Fig. 2.1. Two simulation results with identical parameters. The one on the

left is a single simulation, whereas the one on the right is the average of

100 simulations. If we were to look at just the single simulation, we would

have a skewed perception of the disease, with the peak at around day 8,

whereas the average peak tends to be around day 11-12.

3) Friend Range: For the random and small-world net-

works, the user gives the minimum and maximum number

of friends that a person can have. When constructing the net-

work, the numbers of friends each person has are randomly

distributed within this range.

4) Probability of Random Connection (Small-World): For

a small-world network, this is the probability of a connection
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forming that does not follow the rule of befriending only

nearby nodes.

5) Town Simulation: If this is turned on, the user enters

the name of a town or city in the USA. Then, the network is

constructed by using household and age data, as described

in the Network Modelling section.

6) Recovery Days: This is the number of days needed for

a person to recover from the disease. Currently the default

value is set for a common flu average length of recovery

identified from literature, which is 3 days. In the current

simulations we estimate this parameter through data. We fit

the performance of the network with different values for

recovery, and find the value providing the best fit.

7) Probability of Transmission: This is the probability

that the disease will be transmitted through a single inter-

action. We estimate this parameter by finding the best fit

to actual data. The input is the network of people and the

data from the first few days of the disease, and the output

is the probability of disease transmission that best matches

the results. We run simulations for a number of values for

transmission probability looking for the best fit (Fig 2-2).

The transmission value providing the smallest integrated

variation from the actual results is selected to be used in

the simulations.

8) Initial Number of Infected People: Defines number of

people at the start of simulations that are in an infected state.

In the web application, this information comes from the last

day of the Strii data. Presently, Strii data are simulated.

Fig. 2.2. Two simulation results with identical parameters. The one on the

left is a single simulation, whereas the one on the right is the average of

100 simulations. If we were to look at just the single simulation, we would

have a skewed perception of the disease, with the peak at around day 8,

whereas the average peak tends to be around day 11-12.

9) Initial Number of Vaccinated People: Defined number

of people at the start of simulation that are in a recovered

state. Our program also can introduce a given number of

people who are immune to the disease into the simulation.

These people are determined from the last day of Strii data,

or, in our case, simulated Strii data.

10) Probability of Vaccinating from Connection: The

probability that a person, given at least one of its connections

is infected, will get a vaccine.

11) Percentage of the population that are "teenagers":

We assumed that the number of interactions of young people

is significantly above average, e. g. they go to high school.

We therefore decided to allow selective preventive measures

just for these people, e.g. school closure, or quarantining

(A parent telling their child to miss a day of school due to

sickness). We called nodes with high number of connections

"teenagers". This parameter reflects what percentage of the

population are "teenagers" and therefore are subject for
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isolation preventive measures . For example, if the user

entered 10, the 10% of nodes with the highest amount of

connections would gain "teenager" status.

12) Daily probability of a "teenager" being "curfewed":

Each day, with a certain probability, each "teenager" can

get "curfewed" for a certain number of days determined by

parameter 13. If a "teenager" node is under a "curfew", it

does not interact with its friends, meaning that it cannot get

infected or, if it is sick, infect its friends.

13) Duration of the curfew: The number of days that the

curfew lasts for.

14) Number of times the simulation runs: As the nature

of simulations is probabilistic, we can offer multiple runs

to better approximate the average and deviations of each

individual simulation. The results are averaged before being

returned to the user.

B. Parameter Analysis

As part of our software suite, we let the user analyse the

effect of a single parameter on the entire epidemic (Fig 2-

3). For example, Fig 2-4 shows the results of analysis of the

effect of the probability of infection on the duration of the

disease. As discussed later, we can see a correlation that a

smaller probability of infection relates to a smaller amount

of total incidences of the disease.

Fig. 2.3. A part of our software suite, which allows the user to analyse

the effect of a single parameter on the outcome of the disease. The "Min"

column and "Max" columns are the ranges for testing, and the "step" is

the testing subdivision. For example, with the displayed setup, the program

would run for every probability of infection transmission from 1% (min) to

100% (max), analysing each 1% (step).

Fig. 2.4. A graph of how the probability of getting infected affects the

total number of sick people and length of the overall epidemic. Here, disease

spread is shown as a function of transmission rate. It is evidently positively

correlated with the total number of sick people. For the duration of the

disease, the situation is more complex. For very small percentages, the

duration is obviously low. For very large percentages, the duration is also

very low, as most people instantly get sick, and all are immune within days.

This will be discussed in more detail in our Results section.
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III. MATERIALS & METHODS: STRII CROWDSOURCING

APPLICATION COLLECTING HEALTH STATUS DATA

A. Data Collection Software

Our online data collection software aims to collect updated

localized health status data from individuals accessing our

tool. When creating their account, the user’s exact location

is determined using the HTML5 Geolocation API (Popescu).

Then, on a daily basis, a user can log in and enter their

health status. This creates a database with users and their

recorded data. As shown in Fig 3-1, each row in the

database corresponds to a user, and contains their geospatial

information, as well as 30 days of health information.

Fig. 3.1. Example of the data stored in the Strii database. For each user,

the application saves user’s initial location, and the last 30 days of health

status data, whether user indicated if he/she was sick or healthy. Strii is also

able to missing input.

B. Simulated Data

Currently, since we did not get a chance to transfer Strii to

the cloud and reach out to a wide audience for real data, we

wrote a robust program to simulate the collected data. Given

some number of days, this program generates users and

simulates interactions and disease spread. For our purposes, it

uses a recovery period of 3 days and infection rate of 15%.

An important feature of our program is that it is able to

account for unentered data, since people do not always enter

data every day. This allows it to repair missing information,

which would be crucially important for the success of our

future website, as human-entered data.

Fig. 3.2. An image of our map with simulated data points. Red means

sick, blue means healthy.

C. User Interaction Algorithm

Below, we outline our process of data collection, subse-

quent analysis and forecasting, and presentation of results

that we have developed. After opening the website in their

favorite web browser, the user enters city name or zip code

of interest in a sleek, modern search bar. If this city has

already been requested by a different user, the forecast, which

was stored from the last request, is immediately displayed

atop the map. Otherwise, our Java backend starts a new

background thread, where it obtains city information using

the United States Census API, runs the requested simulation,

and displays the results. Due to the small number of data

points we have in relation to the total city populations, we

use the scalability of social networks in order to run the

simulations. For example, if we have 100 users in a given

town, we map their locations and health statuses propor-

tionally throughout the actual city of 25000 people. Then,

using the method discussed in the Parameters subsection of

Chapter 1, we find the optimal disease spread percentage to

match the historical data, and forecast the continuation of the

infection on the census-based city network using our backend
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simulation software. We save the results in the database, and

present the current case distribution and forecast to the user.

D. Web Based Interface

The ultimate goal of our project is to put this application

completely in the cloud. Users would register, and be able to

select how they feel using a simple, minimalistic menu. This

data would be stored in an online database, and displayed

atop a map on the website. A user would be able to request

a prediction of the future spread of a disease in a certain town

or location on the map, and the Java backend would simulate

with the requested parameters on the cloud using the acquired

data, and the user would see a result. This is quite expensive

to implement, which means that at the moment, our web-

based interface is online, but our simulations are run locally

on a computer. One advantage to this web-based system is

that many people would be able to access it simultaneously.

This would allow us to reach out to a wider audience. Next,

the web based simulation would allow real-time monitoring

of the spread of the disease, with constant updates. This

would allow users to see the spread of disease in their local

towns, allowing them to take immediate preventative action.

Lastly, the website would be freely available on mobile

devices as well, and would take up relatively little battery

life, as opposed to a full application, which we have now.

IV. RESULTS AND DISCUSSION

As a result of the network construction algorithms and the

simulation program, a disease forecaster was developed. The

interaction of the simulated data and the program produced

results such as the graph in Figure 4-1 where the data before

the vertical black line was taken from simulated user inputs,

and the data after the black line showed the forecaster’s

prediction of how the disease would spread. The program

produced therefore has the capability to predict the spread

of disease in a realistic town, using very few days and data

points as a base for prediction. The simulated user inputs can

easily be replaced by inputs acquired through Strii in order to

have the program working on modelling real diseases rather

than simulated ones.

Fig. 4.1. This is the output graph of the forecaster program for Needham,

MA. The data in blue before the vertical black line at day 10 shows the

simulated user input received and scaled up to apply to the entire town.

The data in red after the black line is the program’s prediction for how the

disease will continue to spread through the network.

Our suite also allows one to analyse how changes in

some parameters affect the disease spread. The user can

vary the selected parameter’s value and observe the effect

of changes on the length of epidemic and the total number

of people affected by the disease, such as in Figure 4-2.

These experiments allowed us to compare our simulations to

experimental data and use more realistic parameters, yet it
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can also be used in the future in order to have the program

suggest possible actions users can take in order to prevent

disease spread.

Fig. 4.2. This graph shows the impact of probability of people getting

vaccinations on the spread of a disease. The parameter is the probability of

running to the hospital for vaccination when one’s friend catches the disease.

The red line represents the cost in each scenario, the blue line represents

the total length of the epidemic in days, and the green line represents the

total number of people who got sick during the epidemic. In this scenario,

the impact of more people getting vaccinated is small, and not worth the

cost.

The developed application provides town-level informa-

tion about disease spread for the user, and works for any

location within the US. As an example, consider a hypo-

thetical user from Lexington. As he logs into our web site,

he is prompted to enter his/her health status. Currently, this

is done through simulated users and data. For example, on

December 20, 2014, Strii contained 46 users, 11 of which

were identified by our program as those from Lexington.

After a user prompts the program to analyse Lexington,

the program returns a map of the geospatial distribution of

Lexington users with their current health status, as depicted

in Figure 3-2 earlier in the paper. In addition, the program

runs a predictive simulation, and the result of anticipated

disease spread is also shown to the user, like in Figure 4-

1. The user can also analyse the effects of vaccination or

other interventions on the epidemic in this town. For exam-

ple, Figure 4-2, shows the effect vaccinating an increasing

number of people on the spread of the disease. The user can

vary any parameter provided in our suite, as shown in Figure

2-3, to get a better understanding of possible scenarios and

solutions.

V. FUTURE IMPROVEMENTS

There are many areas of our project that we would like

to improve in the future. First, we would like to improve

accuracy of our forecast. Next, our website is not yet fully

developed. We will work on improving the interface and

adding more options for a more satisfying user experience.

In addition, our program still runs locally on a computer,

as we could not afford to make it accessible on the cloud

by user request. In the future, we would like to upload our

program to the JavaâĎć backend of our web site, to make

everything run on the cloud and be accessible by millions of

users. The future improved version of our app can be seen in

Fig. 5-1. In this setup, Strii data of disease transmission and

in-the-cloud forecasting software work together to present

residents of the United States a website which shows how

disease spreads, and how it is predicted to spread further,

in their local city or town. This can then be connected to

our existing software that analyses the effects of parameter

change on disease spread and epidemic length in order to
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output suggested actions to the user.

Fig. 5.1. A map of how the final product should function. Using data

collected with Strii, a simulation will run through a network that was

constructed using census data. The result is a disease spread timeline which

logs the existing and projected numbers for sick, infected, and recovered

people by day. This timeline will then be used to create a map interface

which allows the user to visually see the spread of the disease by day in a

given town. Then, the data will be analysed again using parameter analysis

in order to suggest to the user what actions they can take in order to prevent

further spread of the disease.
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