Network Motifs of Pathogenic Genes in Human Regulatory Network

Michael Colavita Mentor: Soheil Feizi Fourth Annual MIT PRIMES Conference May 18, 2014

Topics

Background

- Genetics
- Regulatory Networks
- The Human Regulatory Network
- Network Motifs
 - Questions and Methods
 - Sparse Disconnect
 - Low Distance Clustering
 - Network Metrics
- Clustering Detection
 - Method
 - Clusters Found

Genetic Background

- Cell's genes have regulatory effects on each other
 - Upregulation
 - Downregulation
- **Transcription factors** control the expression of other genes
- Target genes have no regulatory effects
- Both can be subject to regulation by other genes

Figure: The central dogma of molecular biology with regulation of gene expression

Genetic Regulatory Networks

Figure: A sample of the human regulatory network

- Medium for storing regulatory information for computational analysis
- Captures regulatory dynamics of a genome
- Nodes represent genes
- Edges indicate upregulatory effects
 - Edge weights indicate strength of regulatory activity

The Human Regulatory Network

- Primary dataset used for regulation data
- Created by combining datasets into a unified network
 - Co-expression network
 - Motif network
 - ChIP network

- 2757 transcription factors
- 16464 target genes
- ~1,000,000 regulatory relationships (cutoff = .95)

Topics

Background

- Genetics
- Regulatory Networks
- The Human Regulatory Network

Network Motifs

- Questions and Methods
- Sparse Disconnect
- Low Distance Clustering
- Network Metrics
- Clustering Detection
 - Method
 - Clusters Found

Network Motifs of Pathogenic Genes

- Motifs are recurring patterns within the network
 - Patterns in structure
 - Consistent high or low enrichment for given metrics
 - Indegree/Outdegree
 - Eigenvector/Betweenness Centrality
 - Clustering Coefficient
- Do certain network motifs lead to genetic disease through positive feedback?

Motivation for Motif Identification

- Examining motifs of pathogenic genes (dbGaP)
 Genes associated with genetic disease
- Understanding the regulatory behavior behind genetic diseases
- Investigating larger scale regulatory structures
- Possible regulatory basis behind genetic disease

Method of Motif Detection

- Generate a binary network from the top 5% of edges.
- Compute enrichment of pathogenicity over a given network metric.

P-value Example

Network Motifs Identified

Analyzed 45 diseases in the network of 19,221 genes

- Identified two major motifs so far
 - Sparse disconnect
 - Low distance clustering

Sparse Disconnect Visualization

Pathogenic Motifs: Sparse Disconnect

- Exhibited in age-related macular degeneration (types 1a and 1b)
 4 diseases found with this motif
- Enrichment of high **indegree** (p = 0.0080)
- Enrichment of low **outdegree** (p = .
- Low density within pathogenic subnetwork (p = .0161)
 - Pathogenic transcription factors and genes are disconnected
 - 25+ components

Outdegree = 2

Indegree = 3

Sparse Disconnect Visualization

Low Distance Clustering Visualization

Pathogenic Motifs: Low Distance Clustering

- Exhibited in **schizophrenia** (type 2)
- Enrichment for both high indegree (p = .0084) and high outdegree (p = .0548)
 - Positive feedback
- Enrichment for high betweenness centrality (p = .0481) and high eigenvector centrality (p = .0605)
- High density within pathogenic sub-network (p = .0239)
- 99% of genes are in a single connected component

Low Distance Clustering Visualization

Network Metrics

- Enrichment of indegree or outdegree was present in 36% of diseases
- Centrality measures were enriched in 9% of diseases

 No diseases were consistently enriched over the genes' clustering coefficient

Topics

Background

- Genetics
- Regulatory Networks
- The Human Regulatory Network

Network Motifs

- Questions and Methods
- Sparse Disconnect
- Low Distance Clustering
- Network Metrics

Clustering Detection

- Method
- Clusters Found

Clustering

• Another point of interest for genetic diseases

• Searching for cohesive regulatory units

 Provides more information about how the pathogenic genes interact

Cluster Detection

- Detects clusters through spectral clustering
 - Simplest form: uses network's algebraic connectivity to divide the nodes into two groups
- Maximize cluster density and minimize cluster count

Spectral Clusterin^o

 Goal: divide a network into two clusters such that the number of edges between k clusters is minimized

 Method: Combined spectral clustering with the k-means algorithm to optimize clusters

Age-related Macular Degeneration (type 1b) Clustering

Cardiovascular Disease Risk (type 1b) Clustering

Future Goals

• Continue search for pathogenic motifs

Identify additional clusters

 Different clustering algorithms

• Investigate GO terms within clusters

Thank You

• To **MIT PRIMES** for this engaging and challenging research opportunity

• To my mentor **Soheil Feizi** for his assistance and guidance throughout the project

To Professor Manolis Kellis for suggesting the project