Modeling changes in gene expression in neurodegeneration in mice Fourth Annual Primes MIT Conference

Lalita Devadas

Mentor: Angela Yen

May 18, 2014

Outline

1 Biological Background

2 Building Models

3 Results

4 Moving Forward

Outline

- 2 Building Models
- 3 Results
- 4 Moving Forward

Gene Expression Central dogma of molecular biology

Regulated by genetic (ACTG) and epigenetic factors

Lalita Devadas - Modeling changes in gene expression in neurodegeneration in mice

Epigenetics Histone modifications

DNA Enviroment

Epigenetic factors are context that affect gene expression

Histone Modifications

Chemical changes to histone protein core or protruding tail

Experimental Data

Neurodegeneration in mice

Outline

- 2 Building Models
- 3 Results
- 4 Moving Forward

Types of Models Random Forest

Random Forest model

Returns value based on set of values determined by a group of decision trees

Types of Models

Linear model

Finds a linear correlation between predictors and response

Two-Step Model Classification and Regression

Lalita Devadas — Modeling changes in gene expression in neurodegeneration in mice

Outline

- 2 Building Models
- 3 Results
- 4 Moving Forward

Final Model

- Train on half of data, test on other half
- Classification step: Random Forest model
- Regression step: Linear models

Results of Two-Step Model Classification Graph

2000 1500 true positive false negative count 1000 500 0 all data more expressed less expressed similarly points than control than control expressed

Accuracy of Classification

Results of Two-Step Model Classification Values

Expression	Sensitivity	Specificity
More than control	.199	.043
Less than control	.063	.043
Same as control	.971	.128

Sensitivity

how good the model is at predicting if a data point belongs in a certain class

Specificity

how good the model is at predicting if a data point doesn't belong in a certain class

Results of Two-Step Model Regression Graph

15/18

Outline

- 2 Building Models
- 3 Results
- 4 Moving Forward

Next Steps

- Reprocess data (to improve our predictive power)
 Use different data (possibly Roadmap data)
- Create R package (for cross validation)

Acknowledgements

I would like to thank:

- My mentor, Angela Yen
- Prof. Manolis Kellis
- Andreas Pfenning
- Prof. Li-Huei Tsai and Elizabeth Gjoneska (Experimental collaborators)
- PRIMES program
- My family