
Automatically Generating
Puzzle Problems with
Varying Complexity

Amy Chou and Justin Kaashoek
Mentor: Rishabh Singh

Fourth Annual PRIMES MIT Conference
May 19th, 2014

The Motivation
● We want to help people learn programming!
● To learn, people want many examples of

different complexity

Current Situation
● Homework problems are few and fixed

difficulty
● Online courses such as 6.00x do not have an

efficient way to check interesting problems

Automatically Generating Problems

def everyOther(l1,l2):

 x=l1[:__]

 y=l2[:__]

 z = __.append(y)

 return __

“I want to learn about Lists, Append, Slicing”

Python → Constraints

Python Equations:
1. Define Meaning of

variables
2. Define

operations/functions
…….
…….
…….
…….

def everyOther(l1,l2):
 x=l1[:2]
 y=l2[:2]
 z = x.append(y)
 return z

Algorithm for Simpler Domain

● Easier to Encode
as constraints

● General Algorithm
for many domains

Algorithm for Simpler Domain

Sudoku Constraints:
1. 9x9 square, 81

integers
2. All 81 integers are

between 1 and 9
3. Values in row,

column, and 3x3
subgrid are distinct

Web Sudoku

http://www.websudoku.com/

 X X X
X X X
 X X
 X X X X
X X
 X X X X
 X X
 X X X
 X X X

http://www.websudoku.com/
http://www.websudoku.com/

Our Website
● Generates more interesting puzzles
● Has a helpful checker that points to incorrect

squares

How was the website made
● Generate around 250,000 puzzles
● Store them in a database with their solutions
● Pick a puzzle depending on user’s request

(number of squares emptied and number of solutions)
● Check user’s filled out board against to

solution to find the exact square where the
user is incorrect

Breaking Down the Problem
● Automatically generate puzzles of different

complexities
● Three main parts to this problem

○ 1. Puzzle: define what a puzzle means
○ 2. Different Complexity
○ 3. Automated Generation

1. Defining the Puzzles

X = [[Int('x%d%d' % (i,j)) for i in range

(9)] for j in range(9)]

valid_values = [And (X[i][j] >= 1, X[i]

[j] <= 9) for i in range(9) for j in range

(9)]

z3 Constraint Solver:
1. Define 81 integer values

1. Defining the Puzzles

Each row contains digits 1-9:

row_distinct = [Distinct(X[i]) for i in range

(9)]

Each column contains digits 1-9:

cols_distinct = [Distinct([X[i][j] for i in

range(9)]) for j in range(9)]

Each 3 X 3 square contains digits 1-9:

three_by_three_distinct = [Distinct([X[3*k +

i][3*l + j] for i in range(3) for j in range

(3)]) for k in range(3) for l in range(3)]

z3 Constraint Solver:
1. Define 81 integer values
2. Add Sudoku constraints

1. Defining the Puzzles
z3 Constraint Solver:

already_set = [X[i][j] == board[i][j] if

board[i][j] != 0 for i in range(9) for j in

range(9)]

1. Define 81 integer values
2. Add Sudoku constraints
3. Encode partially filled Sudoku

1. Defining the Puzzles
z3 Constraint Solver:

sudoku_constraint = valid_values +

row_distinct + cols_distinct +

three_by_three_distinct + already_set

1. Define 81 integer values
2. Add Sudoku constraints
3. Encode partially filled Sudoku
4. Combine all constraints to form

complete set of Sudoku
constraints

2. Defining Complexity
Web Sudoku FAQ:

How do you grade the level of the puzzles?
Every puzzle is graded based on the depth of logical reasoning

required. Our Sudokus never require 'brute force' or 'trial and error' methods,
which are easy for computers but impossible for humans working with pen and
paper.

We took a machine learning based approach.

Support Vector Machines (SVM)

Training Set
(Vectors)

Testing Set

SVM

Function
(determines red or

green)

How good is
this function?

2. Defining Complexity

Unsolved puzzle

[[5, 0, 7, 0, 9, 1, 0, 0, 6],
[0, 0, 0, 0, 0, 7, 0, 4, 1],
[0, 1, 0, 8, 5, 0, 2, 0, 0],
[4, 0, 5, 0, 0, 6, 9, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 9, 1, 0, 0, 3, 0, 5],
[0, 0, 1, 0, 7, 8, 0, 2, 0],
[2, 4, 0, 5, 0, 0, 0, 0, 0],
[8, 0, 0, 6, 2, 0, 1, 0, 9]]

Characterizing vector
[1, 1, 49, 1, 0, 0, 6, 4, 1, 3, 5, 3, 3, 3, 4, 1.80]

Training Set Testing Set

Function
Success Rate

2. Defining Complexity
Characterizing vector

[1, 1, 49, 1, 0, 0, 6, 4, 1, 3, 5, 3, 3, 3, 4, 1.80]

1. Difficulty (1, 2, 3, or 4)
2. Number of solutions (always 1 for puzzles from Web Sudoku)
3. Number of empty squares
4. Density of rows
5. Density of columns
6. Density of 3x3 sub-grids
7 – 15. Number of occurrences of each digit
16. Standard deviation of number of occurrences

2. Defining Complexity

● 80% Success Rate
● Good indicator of

difficulty

3. The Algorithm
★ Generate a solution
★ Strategically empty elements from the

solutions
★ Apply a series of transformations to the

emptied solution

Visual Representation of the algorithm on a Sudoku Puzzle

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 5, 2, 3, 6, 4, 8, 9, 7],
[8, 6, 3, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

Start with a full board

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 0, 0, 3, 6, 4, 8, 9, 7],
[8, 0, 3, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

Choose a square

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 0, 0, 3, 0, 4, 8, 9, 7],
[8, 0, 3, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

The resulting board yields
desired result

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 0, 0, 3, 6, 4, 8, 9, 7],
[8, 0, 0, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

Undesirable
board

The
square is
not
emptied

[[0, 0, 0, 4, 0, 0, 0, 0, 0],
[0, 9, 0, 5, 0, 2, 0, 0, 0],
[7, 0, 0, 0, 0, 0, 5, 8, 0],
[0, 0, 6, 0, 0, 0, 0, 0, 4],
[0, 0, 0, 0, 0, 0, 0, 3, 0],
[9, 0, 8, 0, 0, 0, 6, 0, 0],
[8, 7, 0, 0, 2, 9, 0, 1, 0],
[0, 4, 0, 0, 0, 7, 0, 0, 0],
[0, 0, 0, 0, 0, 3, 0, 6, 0]]

The board is maximally
emptied

[[0, 6, 0, 0, 0, 0, 0, 2, 0],
[0, 0, 0, 0, 0, 7, 0, 0, 0],
[0, 0, 2, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 5, 0, 1, 6, 9, 0],
[7, 0, 0, 0, 0, 0, 3, 0, 0],
[0, 9, 0, 0, 0, 0, 0, 5, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 8],
[6, 3, 0, 0, 7, 0, 4, 0, 0],
[4, 0, 0, 0, 0, 6, 5, 0, 0]]

Transformations
are applied to
create different
puzzle

Step 1: Generate a full puzzle
● Using z3 constraint solver, generate a full

puzzle
● Perform transformations on this puzzle to

create more [[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 5, 2, 3, 6, 4, 8, 9, 7],
[8, 6, 3, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

Step 2: Select a square to empty
● Pick a random row
● Find the percentage of squares that are full in that row
● Generate a random decimal between 0 and 1
● If this decimal is less than the percentage, keep the row
● If the decimal is greater than the percentage, try again with a

new row and a new decimal
● Go through same process to generate

the column

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 0, 0, 3, 6, 4, 8, 9, 7],
[8, 0, 3, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

Step 3: What to do with a selected square

● If the puzzle yields a desirable
result, continue emptying
squares

● If the puzzle yields an undesirable
result, do not empty the square and
pick another square to empty

Desirable result: puzzle that has a number of solutions < K
We looked at many different values of K, but had a focus on when K=2

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 0, 0, 3, 0, 4, 8, 9, 7],
[8, 0, 3, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

[[4, 9, 7, 1, 8, 2, 5, 3, 6],
[1, 0, 0, 3, 6, 4, 8, 9, 7],
[8, 0, 0, 5, 7, 9, 4, 1, 2],
[7, 3, 4, 6, 9, 1, 2, 5, 8],
[2, 8, 9, 4, 3, 5, 7, 6, 1],
[5, 1, 6, 7, 2, 8, 9, 4, 3],
[3, 2, 5, 9, 1, 7, 6, 8, 4],
[9, 7, 1, 8, 4, 6, 3, 2, 5],
[6, 4, 8, 2, 5, 3, 1, 7, 9]]

Generating Full Boards

1. Switch Columns

Generating Full Boards

1. Switch Columns
2. Switch Rows

Generating Full Boards

1. Switch Columns
2. Switch Rows
3. Switch Bands

Generating Full Boards

1. Switch Columns
2. Switch Rows
3. Switch Bands
4. Switch Stacks

Generating Full Boards

1. Switch Columns
2. Switch Rows
3. Switch Bands
4. Switch Stacks
5. Reflect

Generating Full Boards

1. Switch Columns
2. Switch Rows
3. Switch Bands
4. Switch Stacks
5. Reflect
6. Rotate

Generating Full Boards

1. Switch Columns
2. Switch Rows
3. Switch Bands
4. Switch Stacks
5. Reflect
6. Rotate
7. Permute digits

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[4, 8, 9, 1, 3, 2, 5, 7, 6]

Generating Full Boards

1. Switch Columns
2. Switch Rows
3. Switch Bands
4. Switch Stacks
5. Reflect
6. Rotate
7. Permute digits

Pros:
- Very fast
- Works with 12x12, 15x15,
16x16, etc. boards

Con: Only 3x106 boards

Compatibility with other problems

16 X 16 Puzzle
[[13, 8, 4, 2, 16, 6, 10, 12, 9, 11, 7, 3, 15, 5, 14, 1],
[9, 1, 5, 12, 13, 15, 8, 3, 4, 6, 14, 10, 7, 2, 11, 16],
[6, 14, 11, 7, 9, 5, 2, 4, 15, 16, 12, 1, 13, 3, 8, 10],
[15, 16, 10, 3, 7, 14, 1, 11, 2, 13, 8, 5, 6, 12, 4, 9],
[7, 12, 2, 13, 8, 3, 6, 9, 16, 1, 15, 4, 11, 10, 5, 14],
[3, 6, 1, 10, 14, 4, 16, 7, 5, 12, 9, 11, 2, 15, 13, 8],
[11, 4, 15, 8, 12, 1, 5, 13, 10, 14, 6, 2, 16, 9, 3, 7],
[14, 5, 16, 9, 10, 2, 11, 15, 13, 7, 3, 8, 12, 6, 1, 4],
[16, 2, 14, 5, 1, 12, 13, 8, 7, 9, 10, 6, 4, 11, 15, 3],
[4, 9, 13, 15, 5, 11, 3, 6, 8, 2, 1, 16, 10, 14, 7, 12],
[12, 7, 8, 6, 15, 10, 9, 14, 3, 4, 11, 13, 5, 1, 16, 2],
[10, 11, 3, 1, 4, 16, 7, 2, 14, 15, 5, 12, 8, 13, 9, 6],
[8, 3, 6, 16, 11, 13, 12, 5, 1, 10, 4, 14, 9, 7, 2, 15],
[2, 15, 12, 14, 3, 7, 4, 16, 6, 5, 13, 9, 1, 8, 10, 11],
[1, 13, 9, 11, 2, 8, 15, 10, 12, 3, 16, 7, 14, 4, 6, 5],
[5, 10, 7, 4, 6, 9, 14, 1, 11, 8, 2, 15, 3, 16, 12, 13]]

25 X 25 Puzzle
[[4, 21, 7, 18, 13, 3, 6, 15, 9, 20, 24, 12, 16, 25, 2, 22, 11, 17, 14, 5, 10, 1, 19, 8, 23],
[5, 9, 19, 1, 12, 14, 18, 8, 24, 23, 11, 22, 17, 15, 10, 21, 6, 7, 4, 3, 25, 13, 2, 20, 16],
[3, 16, 22, 8, 23, 17, 1, 4, 7, 25, 19, 13, 6, 18, 14, 10, 24, 20, 15, 2, 11, 5, 9, 12, 21],
[2, 15, 24, 11, 10, 13, 21, 16, 5, 19, 3, 8, 20, 23, 7, 18, 25, 9, 12, 1, 14, 4, 17, 6, 22],
[20, 25, 6, 14, 17, 12, 22, 10, 11, 2, 1, 21, 4, 5, 9, 16, 19, 23, 8, 13, 3, 7, 24, 18, 15],
[14, 18, 8, 6, 16, 20, 17, 7, 23, 13, 15, 11, 3, 4, 21, 1, 12, 25, 24, 19, 9, 2, 22, 10, 5],
[25, 22, 15, 2, 7, 24, 3, 21, 18, 10, 8, 6, 23, 1, 19, 14, 5, 4, 9, 11, 13, 17, 12, 16, 20],
[10, 17, 13, 9, 3, 22, 19, 11, 14, 5, 7, 24, 18, 16, 12, 6, 15, 2, 20, 23, 4, 25, 1, 21, 8],
[19, 24, 21, 4, 11, 25, 2, 12, 15, 1, 20, 9, 22, 14, 5, 13, 17, 8, 10, 16, 18, 23, 6, 3, 7],
[1, 5, 23, 12, 20, 8, 4, 9, 16, 6, 10, 17, 25, 2, 13, 7, 22, 3, 18, 21, 19, 15, 11, 14, 24],
[7, 4, 16, 15, 6, 9, 24, 2, 20, 22, 17, 5, 12, 8, 18, 19, 21, 13, 3, 10, 23, 11, 25, 1, 14],
[23, 13, 2, 19, 21, 4, 5, 18, 10, 11, 22, 14, 24, 3, 25, 9, 7, 6, 1, 20, 8, 12, 16, 15, 17],
[9, 3, 10, 17, 14, 23, 25, 6, 8, 15, 13, 7, 1, 20, 16, 24, 4, 5, 11, 12, 22, 18, 21, 19, 2],
[18, 20, 12, 24, 25, 21, 14, 1, 13, 16, 23, 10, 11, 19, 4, 17, 8, 22, 2, 15, 5, 3, 7, 9, 6],
[11, 8, 1, 22, 5, 19, 12, 3, 17, 7, 6, 2, 21, 9, 15, 23, 14, 16, 25, 18, 20, 24, 13, 4, 10],
[17, 1, 18, 10, 8, 15, 9, 5, 12, 14, 2, 20, 13, 11, 6, 3, 16, 21, 23, 25, 7, 22, 4, 24, 19],
[13, 2, 3, 20, 19, 16, 23, 24, 1, 4, 14, 15, 8, 10, 22, 5, 9, 12, 7, 17, 21, 6, 18, 11, 25],
[6, 11, 14, 7, 24, 10, 20, 25, 22, 18, 16, 23, 5, 21, 1, 15, 2, 19, 13, 4, 12, 8, 3, 17, 9],
[15, 23, 4, 5, 9, 6, 11, 17, 19, 21, 18, 25, 7, 12, 3, 8, 20, 1, 22, 24, 16, 14, 10, 2, 13],
[21, 12, 25, 16, 22, 7, 8, 13, 2, 3, 4, 19, 9, 24, 17, 11, 10, 18, 6, 14, 15, 20, 23, 5, 1],
[24, 19, 11, 13, 4, 2, 16, 14, 6, 9, 12, 18, 10, 22, 8, 20, 23, 15, 17, 7, 1, 21, 5, 25, 3],
[12, 7, 20, 25, 1, 11, 15, 22, 21, 17, 5, 16, 2, 13, 24, 4, 3, 10, 19, 8, 6, 9, 14, 23, 18],
[16, 10, 9, 21, 2, 1, 7, 23, 4, 8, 25, 3, 14, 6, 20, 12, 18, 24, 5, 22, 17, 19, 15, 13, 11],
[22, 14, 5, 3, 15, 18, 10, 20, 25, 12, 9, 1, 19, 17, 23, 2, 13, 11, 21, 6, 24, 16, 8, 7, 4],
[8, 6, 17, 23, 18, 5, 13, 19, 3, 24, 21, 4, 15, 7, 11, 25, 1, 14, 16, 9, 2, 10, 20, 22, 12]]

Minimal Changes in Code

Only have to change n to generate new Sudoku puzzles of different complexity

Experimental Results

Size Max Empty
Squares

% Empty
Squares

9x9 60 74%

16x16 163 64%

25x25 281 45%

Future Work
● Generate more constraint-based puzzles

Future Work
● Generate more constraint-based puzzles
● Extend algorithm to automatically generate

Python programming problems

def everyOther(l1,l2):
 x=l1[:2]
 y=l2[:2]
 z = x.append(y)
 return z

def everyOther(l1,l2):

 x=l1[:__]

 y=l2[:__]

 z = __.append(y)

 return __

Sketch

Future Work
● Generate more constraint-based puzzles
● Extend algorithm to automatically generate

Python programming problems
● Generate math problems (algebra,

trigonometry, geometry, etc.)

Special Thanks to...
● Mentor: Rishabh Singh
● Professor: Armando Solar-Lezama
● The MIT-PRIMES Program
● Our parents

