Simplicial Homology

Ravi Jagadeesan and Luke Sciarappa, Mentor: Akhil Mathew

Fourth Annual MIT PRIMES Conference May 17, 2014

Brouwer's Fixed Point Theorem

Algebraic invariants have applications to topological problems.

Theorem (Brouwer)

Let D^{n} denote the closed unit ball in \mathbb{R}^{n}. Every continuous function from D^{n} to itself has a fixed point.

The proof uses the fact that retractable injections induce injections of homology groups: the existence of a fixed-point free endomorphism of D^{n} would imply that there is an injection

$$
H_{i}\left(S^{n-1}, \mathbb{Z}\right) \hookrightarrow H_{i}\left(D^{n}, \mathbb{Z}\right)
$$

for all i, but

$$
H_{n-1}\left(S^{n-1}, \mathbb{Z}\right) \cong \mathbb{Z} \text { and } H_{n-1}\left(D^{n}, \mathbb{Z}\right) \cong 0
$$

Triangulating spaces

We think of an n-simplex as an n-dimensional triangle, and we can 'triangulate' a nice space by gluing a bunch of these together.

Ravi Jagadeesan and Luke Sciarappa, Mentor: Akhil Mathew
Simplicial Homology

Boundary operators

We want to see 'holes' in our space. A hole is a place where "there could be something, but there isn't".
Write C_{n} for group of n-chains: integer linear combinations of n-simplices of a triangulated space. Define boundary operators $d_{n}: C_{n} \rightarrow C_{n-1}$ by

$$
d_{n} s=\sum_{0 \leq i<n}(-1)^{i} s_{i}
$$

for s an n-simplex. s_{i} is the i th face of s. Extended by linearity.

- A 1-simplex s is a line segment between two points, which are its 'faces'. If s goes from a to $b, d_{1} s=b-a$.
- In particular, if $a=b$ (and s is really a loop) $d_{1} s=0$.

Cycles and boundaries

■ If $d_{n} s=0$, we say that $s \in C_{n}$ is a n-cycle. Cycles: 'could be something there'.
■ If s is equal to $d_{n+1} t$ for some t, s is called an n-boundary. Boundaries: 'there is something there'. ("something" $=t$)

- Both the set B_{n} of n-boundaries and Z_{n} of n-cycles form subgroups of C_{n}, with $B_{n} \subset Z_{n}$.
- The nth homology group of the triangulated space is defined to be $H_{n}=Z_{n} / B_{n}$. Doesn't depend on triangulation.
■ In some sense, this counts n-dimensional holes in the space: places where there could be an $(n+1)$-dimensional thing, but there isn't.

Chain complexes

Definition

A chain complex of vector spaces (modules, et cetera) is a sequence

$$
\cdots \rightarrow_{d_{-2}} A_{-1} \rightarrow_{d_{-1}} A_{0} \rightarrow_{d_{0}} A_{1} \rightarrow_{d_{1}} \cdots
$$

such that $d_{n+1} \circ d_{n}=0$ for all n.

Definition

The nth cohomology group of a chain complex A_{\bullet} is

$$
H^{n}(A)=\operatorname{ker} d_{n} / \operatorname{im} d_{n-1}
$$

Sheaves

Sheaves encode how locally defined functions glue together.

Definition

Let X be a topological space. A sheaf \mathcal{F} of sets on X is the data of

1 for all open sets U, a set $\mathcal{F}(U)$;
2 for all open sets $U \subset V$, a function $\operatorname{res}_{V, U}: \mathcal{F}(V) \rightarrow \mathcal{F}(U)$,
such that
1 for all $U \subset V \subset W$, $\operatorname{res}_{W, V} \circ \operatorname{res}_{V, U}=\operatorname{res}_{W, U}$
2 local sections glue together when they agree on the intersection of their domains of definition.

Examples of sheaves on \mathbb{R}

$\mathcal{F}(U)=$

- continuous real-valued functions on U

■ smooth real-valued functions on U

- rational functions on U
- locally constant integer-valued functions on U (constant sheaf $\underline{\mathbb{Z}}$)
- differential 1-forms on U

Sheaf cohomology

■ Given a sheaf \mathcal{F} of vector spaces (abelian groups) on a topological space X, one can cook up a chain complex, whose cohomology $H^{i}(X, \mathcal{F})$ defines the sheaf cohomology groups of X with coefficients in \mathcal{F}.

- These are the derived functors of the global sections functor, which associates to a sheaf \mathcal{F} of abelian groups on X the abelian group $\mathcal{F}(X)$.
- This turns out to agree with simplicial cohomology - the simplicial cohomology groups with coefficents in an abelian group G are isomorphic to the sheaf cohomology groups with coefficients in \underline{G}. It is a useful topological invariant.

Application: the Exponential Exact Sequence

There is a diagram of sheaves on \mathbb{C} :

$$
0 \longrightarrow \underline{\mathbb{Z}} \longrightarrow_{f} \mathcal{O} \longrightarrow_{g} \mathcal{O}^{*} \longrightarrow 0
$$

where $\mathcal{O}(U)$ is holomorphic functions defined on $U, \mathcal{O}^{*}(U)$ is nonvanishing holomorphic functions on $U, f(n)=2 i \pi n$, and $g(f)=\exp (f)$. The image of each map is the kernel of the next. This gives a sequence (for U an open subset of \mathbb{C})

$$
\mathcal{O}(U) \longrightarrow \mathcal{O}^{*}(U) \longrightarrow H^{1}(U, \underline{\mathbb{Z}})
$$

where again the image of the first morphism is the kernel of the second. Image: functions with global logarithms. $H^{1}(U, \underline{Z})$ is simplicial cohomology- measures U 's topology (holes).

Application: the Jordan Curve Theorem

Theorem (Jordan)

Let $f: S^{n-1} \hookrightarrow \mathbb{R}^{n}$ be an injective continuous function. Then, $\mathbb{R}^{n} \backslash \operatorname{im} f$ has two path-components.

The proof uses compactly supported cohomology (a variant of sheaf cohomology that is constructed by cooking up a different complex).

Acknowledgments

> Thanks to Akhil Mathew, our mentor, for navigation and many explanations, the PRIMES program, for setting up our reading group, and to our parents, for all of their support.

```
Images:
http://brickisland.net/cs177fa12/
https://en.wikipedia.org/wiki/File:Tri-brezel.png
https://en.wikipedia.org/wiki/File:Torus-triang.png
http://people.sc.fsu.edu/ jburkardt/f_src/sphere_delaunay/sphere_delaunay.html
https://en.wikipedia.org/wiki/File:Simplicial_complex_example.svg
```

