
Simplicial Homology

Ravi Jagadeesan and Luke Sciarappa,
Mentor: Akhil Mathew

Fourth Annual MIT PRIMES Conference
May 17, 2014

Ravi Jagadeesan and Luke Sciarappa, Mentor: Akhil Mathew

Simplicial Homology



Brouwer’s Fixed Point Theorem

Algebraic invariants have applications to topological problems.

Theorem (Brouwer)

Let Dn denote the closed unit ball in Rn. Every continuous
function from Dn to itself has a fixed point.

The proof uses the fact that retractable injections induce injections
of homology groups: the existence of a fixed-point free
endomorphism of Dn would imply that there is an injection

Hi (S
n−1,Z) ↪→ Hi (D

n,Z)

for all i , but

Hn−1(Sn−1,Z) ∼= Z and Hn−1(Dn,Z) ∼= 0.
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Triangulating spaces

We think of an n-simplex as an n-dimensional triangle, and we can
‘triangulate’ a nice space by gluing a bunch of these together.
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Boundary operators

We want to see ‘holes’ in our space. A hole is a place where “there
could be something, but there isn’t”.
Write Cn for group of n-chains: integer linear combinations of
n-simplices of a triangulated space. Define boundary operators
dn : Cn → Cn−1 by

dns =
∑

0≤i<n

(−1)i si

for s an n-simplex. si is the ith face of s. Extended by linearity.

A 1-simplex s is a line segment between two points, which are
its ‘faces’. If s goes from a to b, d1s = b − a.

In particular, if a = b (and s is really a loop) d1s = 0.
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Cycles and boundaries

If dns = 0, we say that s ∈ Cn is a n-cycle. Cycles: ‘could be
something there’.

If s is equal to dn+1t for some t, s is called an n-boundary.
Boundaries: ‘there is something there’. (“something” = t)

Both the set Bn of n-boundaries and Zn of n-cycles form
subgroups of Cn, with Bn ⊂ Zn.

The nth homology group of the triangulated space is defined
to be Hn = Zn/Bn. Doesn’t depend on triangulation.

In some sense, this counts n-dimensional holes in the space:
places where there could be an (n + 1)-dimensional thing, but
there isn’t.
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Chain complexes

Definition

A chain complex of vector spaces (modules, et cetera) is a
sequence

· · · →d−2 A−1 →d−1 A0 →d0 A1 →d1 · · ·

such that dn+1 ◦ dn = 0 for all n.

Definition

The nth cohomology group of a chain complex A• is

Hn(A) = ker dn/ im dn−1.
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Sheaves

Sheaves encode how locally defined functions glue together.

Definition

Let X be a topological space. A sheaf F of sets on X is the data
of

1 for all open sets U, a set F(U);

2 for all open sets U ⊂ V , a function resV ,U : F(V )→ F(U),

such that

1 for all U ⊂ V ⊂W , resW ,V ◦ resV ,U = resW ,U

2 local sections glue together when they agree on the
intersection of their domains of definition.
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Examples of sheaves on R

F(U) =

continuous real-valued functions on U

smooth real-valued functions on U

rational functions on U

locally constant integer-valued functions on U (constant
sheaf Z)

differential 1-forms on U
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Sheaf cohomology

Given a sheaf F of vector spaces (abelian groups) on a
topological space X , one can cook up a chain complex, whose
cohomology H i (X ,F) defines the sheaf cohomology groups
of X with coefficients in F .

These are the derived functors of the global sections
functor, which associates to a sheaf F of abelian groups on
X the abelian group F(X ).

This turns out to agree with simplicial cohomology – the
simplicial cohomology groups with coefficents in an abelian
group G are isomorphic to the sheaf cohomology groups with
coefficients in G . It is a useful topological invariant.
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Application: the Exponential Exact Sequence

There is a diagram of sheaves on C:

0 −→ Z −→f O −→g O∗ −→ 0

where O(U) is holomorphic functions defined on U, O∗(U) is
nonvanishing holomorphic functions on U, f (n) = 2iπn, and
g(f ) = exp(f ). The image of each map is the kernel of the next.
This gives a sequence (for U an open subset of C)

O(U) −→ O∗(U) −→ H1(U,Z)

where again the image of the first morphism is the kernel of the
second. Image: functions with global logarithms. H1(U,Z) is
simplicial cohomology— measures U’s topology (holes).
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Application: the Jordan Curve Theorem

Theorem (Jordan)

Let f : Sn−1 ↪→ Rn be an injective continuous function. Then,
Rn \ im f has two path-components.

The proof uses compactly supported cohomology (a variant of
sheaf cohomology that is constructed by cooking up a different
complex).
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