Proving the Trefoil is Knotted

William Kuszmaul, Rohil Prasad, Isaac Xia
Mentored by Umut Varolgunes
Fourth Annual MIT PRIMES Conference

May 17, 2014

How To Build a Knot

1. Take 1 piece of string
2. Tangle it up
3. Glue ends together

Example Knots

SOME KNOTS ARE THE SAME

Knot diagrams can be deformed, like in real life.

Reidemeister Moves

- We think of knots as knot diagrams:

II.

III.

The big Question

Question: How can we show that two knots aren't equal?

Answer: Find an Invariant.
Assign a number to each knot diagram so that two knot diagrams that are equivalent have same assigned number.

Example Invariant: Crossing Number

- Find an equivalent knot diagram with the fewest crossings
- Crossing number $=$ fewest number of crossings

- But this is hard to compute in reality

A Better Invariant: Tricoloring Knots

- Assign one of three colors, a, b, c to each strand in a knot diagram (red, blue, green)
- At any crossing, strands must either have all different or all same color

- We are interested in the number of tricolorings of a knot.

Why Tricolorability Matters

Theorem

If a knot diagram has k tricolorings, then all equivalent knot diagrams have k tricolorings.

How to Prove:
Show number of tricolorings is maintained by Reidemeister moves.

Example: Bijecting Tricolorings For Second

 Reidemeister Move

Case 1: Same Color

Example: Bijecting Tricolorings For Second

 Reidemeister Move

Case 2: Different Colors

Treforl is Knotted!

(a) 3 Unknot Tricolorings

(b) 9 Trefoil

Tricolorings
\Longrightarrow Trefoil \neq Unknot

A Different Approach: Focus on One Crossing

Trefoil Knot

(a) Crossing Change 1

(b) Crossing Change 2

How can we take advantage of this?

A Weird Polynomial: Jones Polynomial $J(K)$

1. Pick a crossing:
2. Look at its rearrangements:

3. Use recursion:

$$
\begin{aligned}
t^{-2} J\left(K_{1}\right)-t^{2} J\left(K_{2}\right) & =\left(t-t^{-1}\right) J\left(K_{3}\right) \\
J(\mathrm{O}) & =1
\end{aligned}
$$

Why Jones Polynomial Matters: It's an InVARIANT!

Theorem

If knot diagrams A and B are equivalent, then $J(A)=J(B)$.
How to Prove: Show Jones Polynomial is unchanged by Reidemeister Moves.

Example: 2 Unknots At Once

$J(2$ Unknots $)=J\left(A_{3}\right)$
$=\frac{t^{-2} J\left(A_{1}\right)-t^{2} J\left(A_{2}\right)}{t-t^{-1}}$
$=\frac{t^{-2} J(\text { Unknot })-t^{2} J(\text { Unknot })}{t-t^{-1}}$
$=\frac{t^{-2}(1)-t^{2}(1)}{t-t^{-1}}$
$=-t-t^{-1}$.

A Weirder Example: Linked Unknots

(a) (Linked Unknots) B_{1}
(b) B_{2}
(c) B_{3}
$J($ Linked Unknots $)=J\left(B_{1}\right)$

$$
\begin{aligned}
& =t^{4} J\left(B_{2}\right)+\left(t^{3}-t\right) J\left(B_{3}\right) \\
& =t^{4} J(\text { Separate Unknots })+\left(t^{3}-t\right) J(\text { Unknot }) \\
& =t^{4}\left(-t-t^{-1}\right)+\left(t^{3}-t\right)(1) \\
& =-t^{5}-t
\end{aligned}
$$

Jones Polynomial of Trefoil

(a) T_{1} (Trefoil)

(b) T_{2}

(c) T_{3}
$J($ Trefoil $)=J\left(T_{1}\right)$

$$
\begin{aligned}
& =t^{4} J\left(T_{2}\right)+\left(t^{3}-t\right) J\left(T_{3}\right) \\
& =t^{4} J(\text { Unknot })+\left(t^{3}-t\right) J(\text { Linked Unknots }) \\
& =t^{4}(1)+\left(t^{3}-t\right)\left(-t^{5}-t\right) \\
& =-t^{8}+t^{6}+t^{2} .
\end{aligned}
$$

Completing Second Proof

$$
\begin{aligned}
J(\bigcirc) & =1 \\
J(\varnothing) & =-t^{8}+t^{6}+t^{2} \\
& \Longrightarrow \text { Trefoil } \neq \text { Unknot }
\end{aligned}
$$

AcKnowledgements

We want to thank

1. Our mentor Umut Varolgunes for working with us every week.
2. MIT PRIMES for setting up such a fun reading group.
