Classification of 7-Dimensional Unital Commutative Algebras

Alexandria Yu

Mentor: Sherry Gong

Fourth Annual MIT PRIMES Conference

May 17, 2014

Algebras

Let K be a field (e.g. \mathbb{C}).

Definition

A vector space A over K is called an algebra over K if A is equipped with a product operation which is compatible with the addition and scalar multiplication.

Finite Dimensional Algebras

- An algebra A is said to be finite dimensional if A is finite dimensional as a vector space.

Finite Dimensional Algebras

- An algebra A is said to be finite dimensional if A is finite dimensional as a vector space.
- An algebra A is said to be unital if there exists an identity $I \in A$ such that $I \cdot a=a \cdot I=a$ for all $a \in A$.

Finite Dimensional Algebras

- An algebra A is said to be finite dimensional if A is finite dimensional as a vector space.
- An algebra A is said to be unital if there exists an identity $I \in A$ such that $I \cdot a=a \cdot I=a$ for all $a \in A$.
- An algebra A is called commutative if $a b=b a$ for all $a, b \in A$.

Examples of Finite Dimensional Algebras

$M_{n}(\mathbb{C})$: the set of all $n \times n$ matrices with entries in \mathbb{C}.

Examples of Finite Dimensional Algebras

$M_{n}(\mathbb{C})$: the set of all $n \times n$ matrices with entries in \mathbb{C}.

- The set $M_{n}(\mathbb{C})$ is an algebra with the usual matrix addition, scalar multiplication and matrix product.

Examples of Finite Dimensional Algebras

$M_{n}(\mathbb{C})$: the set of all $n \times n$ matrices with entries in \mathbb{C}.

- The set $M_{n}(\mathbb{C})$ is an algebra with the usual matrix addition, scalar multiplication and matrix product.
- The algebra $M_{n}(\mathbb{C})$ is unital and finite dimensional over \mathbb{C} with dimension n^{2}.

Examples of Finite Dimensional Algebras

$M_{n}(\mathbb{C})$: the set of all $n \times n$ matrices with entries in \mathbb{C}.

- The set $M_{n}(\mathbb{C})$ is an algebra with the usual matrix addition, scalar multiplication and matrix product.
- The algebra $M_{n}(\mathbb{C})$ is unital and finite dimensional over \mathbb{C} with dimension n^{2}.
- The algebra $M_{n}(\mathbb{C})$ is not commutative if $n>1$.

Examples of Finite Dimensional Algebras

A: the algebra of all 3×3 matrices of the following form:

$$
\left(\begin{array}{lll}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right)
$$

for any $a, b, c \in \mathbb{C}$.

Examples of Finite Dimensional Algebras

A: the algebra of all 3×3 matrices of the following form:

$$
\left(\begin{array}{lll}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right)
$$

for any $a, b, c \in \mathbb{C}$.

A: a 3-dimensional unital commutative algebra over \mathbb{C}.

Homomorphisms of Algebras

A, B : two algebras over the field K.

Definition

A map $f: A \rightarrow B$, is called a homomorphism if

Homomorphisms of Algebras

A, B : two algebras over the field K.

Definition

A map $f: A \rightarrow B$, is called a homomorphism if

- f respects scalar multiplication;

Homomorphisms of Algebras

A, B : two algebras over the field K.

Definition

A map $f: A \rightarrow B$, is called a homomorphism if

- f respects scalar multiplication;
- f respects addition;

Homomorphisms of Algebras

A, B : two algebras over the field K.

Definition

A map $f: A \rightarrow B$, is called a homomorphism if

- f respects scalar multiplication;
- f respects addition;
- f respects product.

Isomorphisms of Algebras

- A homomorphism $f: A \rightarrow B$, is called an isomorphism if it is bijective.

Isomorphisms of Algebras

- A homomorphism $f: A \rightarrow B$, is called an isomorphism if it is bijective.
- Two algebras A and B are said to be isomorphic if there exists an isomorphism $f: A \rightarrow B$.

Structure of Finite Dimensional Algebras

Theorem

Let K be a field. If A is an n-dimensional unital algebra over K, then A is isomorphic to a subalgebra of $M_{n}(K)$, the unital algebra of all $n \times n$ matrices over K.

Classification Problem

Problem

Classify unital finite dimensional commutative algebra up to isomorphism.

Discovering Examples Through Jordan Forms

Let A be a 7-dimensional unital commutative algebra over a field $K . A$ is a subalgebra of $M_{7}(K)$. Assume that every element in A is upper triangular and A contains an element with the following Jordan form:

$$
J=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Jordan Form

For any x and y in A, we have $x J=J x$ and $y J=J y$. Hence

$$
x=\left(\begin{array}{lllllll}
0 & a & b & 0 & f & g & h \\
0 & 0 & a & 0 & 0 & f & g \\
0 & 0 & 0 & 0 & 0 & 0 & f \\
0 & 0 & 0 & 0 & c & d & e \\
0 & 0 & 0 & 0 & 0 & c & d \\
0 & 0 & 0 & 0 & 0 & 0 & c \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Jordan Form

$$
y=\left(\begin{array}{ccccccc}
0 & k & l & 0 & q & r & s \\
0 & 0 & k & 0 & 0 & q & r \\
0 & 0 & 0 & 0 & 0 & 0 & q \\
0 & 0 & 0 & 0 & m & n & p \\
0 & 0 & 0 & 0 & 0 & m & n \\
0 & 0 & 0 & 0 & 0 & 0 & m \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Jordan Form

$$
x y=\left(\begin{array}{ccccccc}
0 & 0 & a k & 0 & 0 & a q+f m & a r+b q+f n+g m \\
0 & 0 & 0 & 0 & 0 & 0 & a q+f m \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & m c & n c+m d \\
0 & 0 & 0 & 0 & 0 & 0 & m c \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Jordan Form

Using the above formula and $x y=y x$, we obtain

$$
\frac{a-c}{f}=\frac{k-m}{q}
$$

Let

$$
\alpha=\frac{a-c}{f}=\frac{k-m}{q}
$$

We have

$$
\frac{\alpha r+n-l}{q}=\frac{\alpha g+d-b}{f} .
$$

Let

$$
\beta=\frac{\alpha r+n-l}{q}=\frac{\alpha g+d-b}{f} .
$$

A New Family of Algebras

For each pair of $(\alpha, \beta), A(\alpha, \beta)$ is the 7-dimensional unital commutative algebra of all matrices

$$
x=\left(\begin{array}{lllllll}
k & a & b & 0 & f & g & h \\
0 & k & a & 0 & 0 & f & g \\
0 & 0 & k & 0 & 0 & 0 & f \\
0 & 0 & 0 & k & c & d & e \\
0 & 0 & 0 & 0 & k & c & d \\
0 & 0 & 0 & 0 & 0 & k & c \\
0 & 0 & 0 & 0 & 0 & 0 & k
\end{array}\right)
$$

for all $k, a, b, c, d, e, f, g, h \in K$ satisfying

$$
a-c=\alpha f, \quad \alpha g+d-b=\beta f .
$$

A Classification Problem

Problem

For two pairs of (α, β) and $\left(\alpha^{\prime}, \beta^{\prime}\right)$, when is $A(\alpha, \beta)$ isomorphic to $A\left(\alpha^{\prime}, \beta^{\prime}\right)$?

Classification Theorem

Theorem

If $\alpha \neq 0$ and $\beta \neq 0$, then $A(\alpha, \beta)$ is isomorphic to the 7-dimensional unital commutative algebra:

$$
\left\{k_{0} I+k_{1} x+k_{2} x^{2}+k_{3} y+k_{4} y^{2}+k_{5} y^{3}+k_{6} z: \quad k_{i} \in K\right\},
$$

where x, y, z are the generators satisfying the relations:

$$
x^{3}=0, \quad y^{4}=0, \quad z^{2}=0, \quad x y=x z=y z=0
$$

Classification Theorem

Theorem

If $\alpha \neq 0$ and $\beta \neq 0$, then $A(\alpha, \beta)$ is isomorphic to the 7-dimensional unital commutative algebra:

$$
\left\{k_{0} I+k_{1} x+k_{2} x^{2}+k_{3} y+k_{4} y^{2}+k_{5} y^{3}+k_{6} z: \quad k_{i} \in K\right\}
$$

where x, y, z are the generators satisfying the relations:

$$
x^{3}=0, \quad y^{4}=0, \quad z^{2}=0, \quad x y=x z=y z=0
$$

Corollary: If $\alpha \neq 0, \beta \neq 0, \alpha^{\prime} \neq 0$ and $\beta^{\prime} \neq 0$, then $A(\alpha, \beta)$ is isomorphic to $A\left(\alpha^{\prime}, \beta^{\prime}\right)$.

Proof of Theorem

Let

$$
a=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \frac{1}{\alpha} & \frac{\beta}{\alpha^{2}} & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{\alpha} & \frac{\beta}{\alpha^{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\alpha} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) ;
$$

Proof

$$
b=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & -\frac{1}{\alpha} & -\frac{\beta}{\alpha^{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{\alpha} & -\frac{\beta}{\alpha^{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\alpha} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) ;
$$

Proof

$$
c=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Proof

We have

$$
a^{3}=0, \quad b^{4}=0, \quad c^{2}=0, \quad a b=a c=b c=0
$$

We can verify that

$$
A(\alpha, \beta)=
$$

$$
\left\{k_{0} I+k_{1} a+k_{2} a^{2}+k_{3} b+k_{4} b^{2}+k_{5} b^{3}+k_{6} c: \quad k_{i} \in K\right\} .
$$

We construct an isomophism by: $a \rightarrow x, \quad b \rightarrow y, \quad c \rightarrow z$. QED

Classification of Unital 7-dimensional Commutative

Algebras

For any $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ in a field K, define $A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ to be the 7-dimensional unital commutative algebra over K :

$$
\left\{k_{0} I+k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}+k_{4} x_{4}+k_{5} B_{1}+k_{6} B_{2}: k_{i} \in K\right\},
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, B_{1}, B_{2}$ are the generators satisfying the relations:
(1) $x_{i} B_{j}=0$ for all i and j;
(2) $B_{i} B_{j}=0$ for all i and j;
(3) $x_{i} x_{j}=0$ for all $i \neq j$;
(4) $x_{i}^{2}=B_{1}+\alpha_{i} B_{2}$ for all i;
(5) $x_{i}^{3}=0$ for all i.

A Classification Result

Theorem

Let K be an algebraically closed field. Let
$\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ be scalars in K. Assume that $\alpha_{i} \neq \alpha_{j}$ for some pair i and j. The unital commutative algebras $A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $A\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ are isomorphic if and only if there exists an invertible matrix $\left(\begin{array}{ll}q_{11} & q_{12} \\ q_{21} & q_{22}\end{array}\right)$ and a permutation σ of $\{1,2,3,4\}$ such that

$$
\beta_{i}=\frac{q_{21}+q_{22} \alpha_{\sigma(i)}}{q_{11}+q_{12} \alpha_{\sigma(i)}}
$$

A Classification Result

Theorem

Let K be an algebraically closed field. Let
$\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ be scalars in K. Assume that $\alpha_{i} \neq \alpha_{j}$ for some pair i and j. The unital commutative algebras $A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $A\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ are isomorphic if and only if there exists an invertible matrix $\left(\begin{array}{ll}q_{11} & q_{12} \\ q_{21} & q_{22}\end{array}\right)$ and a permutation σ of $\{1,2,3,4\}$ such that

$$
\beta_{i}=\frac{q_{21}+q_{22} \alpha_{\sigma(i)}}{q_{11}+q_{12} \alpha_{\sigma(i)}}
$$

A field K is said to be algebraically closed if every polynomial equation with coefficients in K has a solution in K (e.g. $\mathbb{C})$.

Proof of the If Part (the Easy Part)

We denote the generators of $A\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ by:
$y_{1}, y_{2}, y_{3}, y_{4}, C_{1}, C_{2}$.
We construct an isomorphism:

$$
f: A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \rightarrow A\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)
$$

as follows:

$$
\begin{gathered}
f\left(x_{i}\right)=\sqrt{q_{11}+\alpha_{i} q_{12}} \quad y_{\sigma^{-1}(i)}, \\
f\left(B_{1}\right)=q_{11} C_{1}+q_{21} C_{2}, \\
f\left(B_{2}\right)=q_{12} C_{1}+q_{22} C_{2} .
\end{gathered}
$$

QED

A Consequence

The following result gives an easily verifiable necessary condition for two algebras in the family to be isomorphic.

Theorem

Assume that $\alpha_{i} \neq \alpha_{j}$ for some pair i and j. If $A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ is isomorphic to $A\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$, then there exists a permutation σ of $\{1,2,3,4\}$ such that

$$
\operatorname{det}\left(\begin{array}{cccc}
\beta_{1} & \beta_{1} \alpha_{\sigma(1)} & 1 & \alpha_{\sigma(1)} \\
\beta_{2} & \beta_{2} \alpha_{\sigma(2)} & 1 & \alpha_{\sigma(2)} \\
\beta_{3} & \beta_{3} \alpha_{\sigma(3)} & 1 & \alpha_{\sigma(3)} \\
\beta_{4} & \beta_{4} \alpha_{\sigma(4)} & 1 & \alpha_{\sigma(4)}
\end{array}\right)=0 .
$$

By the previous theorem, there exists an invertible matrix $\left(\begin{array}{ll}q_{11} & q_{12} \\ q_{21} & q_{22}\end{array}\right)$ and a permutation σ of $\{1,2,3,4\}$ such that

$$
\beta_{i}=\frac{q_{21}+q_{22} \alpha_{\sigma(i)}}{q_{11}+q_{12} \alpha_{\sigma(i)}} .
$$

Proof

It follows that the following linear system (with q_{11}, q_{12}, q_{21}, and q_{22} as the unknowns) has a nonzero solution:

$$
\begin{aligned}
& \beta_{1} q_{11}+\beta_{1} \alpha_{\sigma(1)} q_{12}-q_{21}-\alpha_{\sigma(1)} q_{22}=0, \\
& \beta_{2} q_{11}+\beta_{2} \alpha_{\sigma(2)} q_{12}-q_{21}-\alpha_{\sigma(2)} q_{22}=0, \\
& \beta_{3} q_{11}+\beta_{3} \alpha_{\sigma(3)} q_{12}-q_{21}-\alpha_{\sigma(3)} q_{22}=0, \\
& \beta_{4} q_{11}+\beta_{4} \alpha_{\sigma(4)} q_{12}-q_{21}-\alpha_{\sigma(4)} q_{22}=0 .
\end{aligned}
$$

Proof

Hence

$$
\operatorname{det}\left(\begin{array}{llll}
\beta_{1} & \beta_{1} \alpha_{\sigma(1)} & 1 & \alpha_{\sigma(1)} \\
\beta_{2} & \beta_{2} \alpha_{\sigma(2)} & 1 & \alpha_{\sigma(2)} \\
\beta_{3} & \beta_{3} \alpha_{\sigma(3)} & 1 & \alpha_{\sigma(3)} \\
\beta_{4} & \beta_{4} \alpha_{\sigma(4)} & 1 & \alpha_{\sigma(4)}
\end{array}\right)=0
$$

QED

An Application

We give a new proof of the following result due to Professor Poonen.

Corollary

Let K be an algebraically closed field. There exist infinitely many non-isomorphic 7-dimensional unital commutative algebras over K.

Sketch of Proof

Recall that any algebraically closed field has infinitely many elements. We choose $\alpha_{1}=1, \alpha_{2}=\alpha, \alpha_{3}=\alpha^{2}, \alpha_{4}=\alpha^{3}$ and apply the previous theorem.
QED

Future Directions

- I plan to study the question of classifying all 7-dimensional unital commutative algebras.

Future Directions

- I plan to study the question of classifying all 7-dimensional unital commutative algebras.
- We conjecture: there are only finitely many 7-dimensional unital commutative algebras up to isomorphism outside the family of 7-dimensional unital commutative algebras $A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$.

Future Directions

- I plan to study the question of classifying all 7-dimensional unital commutative algebras.
- We conjecture: there are only finitely many 7-dimensional unital commutative algebras up to isomorphism outside the family of 7-dimensional unital commutative algebras $A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$.
- A more ambitious project: classify all finite dimensional unital commutative algebras up to isomorphism.

Thank You!

would like to thank

- Sherry Gong
- Dr. Tanya Khovanova
- Professor Bjorn Poonen and Professor Pavel Etingof
- Dr. Justin Fitzpatrick
- The MIT Primes Program

References

- G. Mazzola, Generic finite schemes and Hochschild cocycles, Comment. Math. Helv. 55 (1980), no. 2, 267-293.
- B. Poonen, Isomorphism types of commutative algebras of finite rank over an algebraically closed field, http://www-math.mit.edu/ poonen/papers/dimension6.pdf.
- B. Poonen, The moduli space of commutative algebras of finite rank, http://www-math.mit.edu/ poonen/papers/moduli.pdf.

