G-Parking Functions and Monomial Ideals

Brice Huang

Mentored by Wuttisak Trongsiriwat

Fourth Annual MIT PRIMES Conference
May 17, 2014

Definitions

- Directed graph (digraph): collection of vertices and oriented edges between pairs of vertices

Definitions

- Directed graph (digraph): collection of vertices and oriented edges between pairs of vertices

- Subtree of digraph: subgraph in which each vertex has a unique path to a vertex known as the root

Definitions

- Directed graph (digraph): collection of vertices and oriented edges between pairs of vertices

- Subtree of digraph: subgraph in which each vertex has a unique path to a vertex known as the root

- Spanning tree of digraph: a subtree containing all vertices

Definitions

- Subforest of digraph: the union of one or more subtrees on disjoint sets of vertices

Definitions

- Subforest of digraph: the union of one or more subtrees on disjoint sets of vertices

- Spanning forest of digraph: a subforest containing all vertices

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than ($n, n-1, \ldots, 1$)

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than $(n, n-1, \ldots, 1)$
- Analogy: n drivers on a one-way road with parking spots $0,1, \ldots, n-1$

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than ($n, n-1, \ldots, 1$)
- Analogy: n drivers on a one-way road with parking spots $0,1, \ldots, n-1$
- Example: $(1,0,3,0)$

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than ($n, n-1, \ldots, 1$)
- Analogy: n drivers on a one-way road with parking spots $0,1, \ldots, n-1$
- Example: $(1,0,3,0)$

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than ($n, n-1, \ldots, 1$)
- Analogy: n drivers on a one-way road with parking spots $0,1, \ldots, n-1$
- Example: $(1,0,3,0)$

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than ($n, n-1, \ldots, 1$)
- Analogy: n drivers on a one-way road with parking spots $0,1, \ldots, n-1$
- Example: $(1,0,3,0)$

Parking Functions

- A classical parking function is an n-tuple of nonnegative integers $\left(b_{1}, \ldots, b_{n}\right)$ that, when sorted in decreasing order, is termwise less than ($n, n-1, \ldots, 1$)
- Analogy: n drivers on a one-way road with parking spots $0,1, \ldots, n-1$
- Example: $(1,0,3,0)$

Parking Functions

- There are $(n+1)^{n-1}$ classical parking functions of size n

Parking Functions

- There are $(n+1)^{n-1}$ classical parking functions of size n

Theorem (Cayley)
The complete graph K_{n+1} has $(n+1)^{n-1}$ spanning trees.

G-Parking Functions

- G is a digraph on vertices $\{0,1, \ldots, n\}$
- For a nonempty subset $I \subseteq\{1, \ldots, n\}$, and vertex $i \in I$, let $d_{l}(i)$ denote the number of edges from i to vertices outside I

G-Parking Functions

- G is a digraph on vertices $\{0,1, \ldots, n\}$
- For a nonempty subset $I \subseteq\{1, \ldots, n\}$, and vertex $i \in I$, let $d_{l}(i)$ denote the number of edges from i to vertices outside I

- A G-parking function is an n-tuple $\left(b_{1}, \ldots, b_{n}\right)$ such that for any nonempty subset $I \subseteq\{1,2, \ldots, n\}$, there exists $i \in I$ such that $b_{i}<d_{l}(i)$

G-Parking Functions

- G is a digraph on vertices $\{0,1, \ldots, n\}$
- For a nonempty subset $I \subseteq\{1, \ldots, n\}$, and vertex $i \in I$, let $d_{l}(i)$ denote the number of edges from i to vertices outside I

- A G-parking function is an n-tuple $\left(b_{1}, \ldots, b_{n}\right)$ such that for any nonempty subset $I \subseteq\{1,2, \ldots, n\}$, there exists $i \in I$ such that $b_{i}<d_{l}(i)$
- Example: $(0,1,1)$ is a G-parking function, where G is the graph above

G-Parking Functions

- Theorem

The number of G-parking functions equals the number of spanning trees of G rooted at 0 .

G-Parking Functions

- Theorem

The number of G-parking functions equals the number of spanning trees of G rooted at 0 .

- Classical parking functions are the special case $G=K_{n+1}$

G-Parking Functions

- Theorem

The number of G-parking functions equals the number of spanning trees of G rooted at 0 .

- Classical parking functions are the special case $G=K_{n+1}$
- Chebikin and Pylyavskyy constructed an explicit bijection

Chebikin-Pylyavskyy Bijection

- For every subtree T of G rooted at 0 , assign an order $\pi(T)$ to T 's vertices. Let $i<_{\pi(T)} j$ denote i being smaller than j in this order

Chebikin-Pylyavskyy Bijection

- For every subtree T of G rooted at 0 , assign an order $\pi(T)$ to T 's vertices. Let $i<_{\pi(T)} j$ denote i being smaller than j in this order
- An choice of orders $\Pi(G)$ is a proper set of tree orders if for each subtree T rooted at 0 :
- if an edge $(i, j) \in T$, then $i>_{\pi(T)} j$
- if t is a subtree of T, then the orders $\pi(t)$ and $\pi(T)$ are consistent

Chebikin-Pylyavskyy Bijection

- For every subtree T of G rooted at 0 , assign an order $\pi(T)$ to T 's vertices. Let $i<_{\pi(T)} j$ denote i being smaller than j in this order
- An choice of orders $\Pi(G)$ is a proper set of tree orders if for each subtree T rooted at 0 :
- if an edge $(i, j) \in T$, then $i>_{\pi(T)} j$
- if t is a subtree of T, then the orders $\pi(t)$ and $\pi(T)$ are consistent
- Example: Breadth-first search order

$$
0<_{\pi(T)} 1<_{\pi(T)} 3<_{\pi(T)} 2
$$

Chebikin-Pylyavskyy Bijection

- Fix a proper set of tree orders $\Pi(G)$
- For each spanning tree T, let $e(T, i)$ be the edge out of i in T
- Given a subtree T and order $\pi(T)$, for each vertex i, order the edges from i to T such that $\left(i, j_{1}\right)<_{\pi(T)}\left(i, j_{2}\right)$ if $j_{1}<_{\pi(T)} j_{2}$

Chebikin-Pylyavskyy Bijection

- Fix a proper set of tree orders $\Pi(G)$
- For each spanning tree T, let $e(T, i)$ be the edge out of i in T
- Given a subtree T and order $\pi(T)$, for each vertex i, order the edges from i to T such that $\left(i, j_{1}\right)<_{\pi(T)}\left(i, j_{2}\right)$ if $j_{1}<_{\pi(T)} j_{2}$

Theorem (Chebikin, Pylyavskyy)
Map each spanning tree T to $\left(b_{1}, \ldots, b_{n}\right)$, where b_{i} is the number of edges e from i such that $e<_{\pi(T)} e(T, i)$. This mapping is a bijection between G 's spanning trees rooted at 0 and G-parking functions.

Chebikin-Pylyavskyy Bijection - An Example

- G-parking functions: $(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0)$, (0,1,1)

Chebikin-Pylyavskyy Bijection - An Example

- G-parking functions: $(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0)$, $(0,1,1)$
- Spanning trees:

Monomial Ideals

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in variables x_{1}, \ldots, x_{n} on a fixed field \mathbb{K} of characteristic 0

Monomial Ideals

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in variables x_{1}, \ldots, x_{n} on a fixed field \mathbb{K} of characteristic 0
- For each nonempty subset $I \subseteq\{1, \ldots, n\}$, define

$$
m_{l}=\prod_{i \in I} x_{i}^{d_{l}(i)}
$$

and let the ideal $\mathcal{I}_{G}=\left\langle m_{l}\right\rangle$ as $/$ ranges over all nonempty subsets of $\{1, \ldots, n\}$

Monomial Ideals

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in variables x_{1}, \ldots, x_{n} on a fixed field \mathbb{K} of characteristic 0
- For each nonempty subset $I \subseteq\{1, \ldots, n\}$, define

$$
m_{l}=\prod_{i \in I} x_{i}^{d_{l}(i)}
$$

and let the ideal $\mathcal{I}_{G}=\left\langle m_{l}\right\rangle$ as $/$ ranges over all nonempty subsets of $\{1, \ldots, n\}$

- $\left(b_{1}, \ldots, b_{n}\right)$ is a G-parking function if and only if $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ does not vanish in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \mathcal{I}_{G}$

Monomial Ideals - An Example

- $\mathcal{I}_{G}=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1}^{2} x_{2}, x_{1} x_{3}, x_{2} x_{3}^{2}, x_{1} x_{2}^{0} x_{3}\right\rangle$

Monomial Ideals - An Example

- $\mathcal{I}_{G}=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{1}^{2} x_{2}, x_{1} x_{3}, x_{2} x_{3}^{2}, x_{1} x_{2}^{0} x_{3}\right\rangle$
- Non-vanishing monomials: $1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{2} x_{3}$
- G-parking functions: $(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0)$, $(0,1,1)$

Almost-G-Parking Functions

- For each nonempty subset $I=\left\{i_{1}<\cdots<i_{k}\right\} \subseteq\{1, \ldots, n\}$, define

$$
\hat{m}_{I}=x_{i_{1}} \prod_{i \in I} x_{i}^{d_{l}(i)}
$$

and let the ideal $\hat{\mathcal{I}}_{G}=\left\langle\hat{m}_{I}\right\rangle$ as $/$ ranges over all nonempty subsets of $\{1, \ldots, n\}$

- $\left(b_{1}, \ldots, b_{n}\right)$ is an almost-G-parking function if $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ does not vanish in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \hat{\mathcal{I}}_{G}$

Almost-G-Parking Functions

- For each nonempty subset $I=\left\{i_{1}<\cdots<i_{k}\right\} \subseteq\{1, \ldots, n\}$, define

$$
\hat{m}_{I}=x_{i_{1}} \prod_{i \in I} x_{i}^{d_{l}(i)}
$$

and let the ideal $\hat{\mathcal{I}}_{G}=\left\langle\hat{m}_{I}\right\rangle$ as I ranges over all nonempty subsets of $\{1, \ldots, n\}$

- $\left(b_{1}, \ldots, b_{n}\right)$ is an almost-G-parking function if $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ does not vanish in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \hat{\mathcal{I}}_{G}$
- Theorem (Postnikov, Shapiro, Shapiro) When $G=K_{n+1}$, the number of almost-G-parking functions equals the number of (undirected) spanning forests of G.

Almost-G-Parking Functions and Spanning Forests

- We explicity construct a bijection between almost-G-parking functions and spanning forests of G whose connected components are rooted at their smallest vertices

Almost-G-Parking Functions and Spanning Forests

- We explicity construct a bijection between almost-G-parking functions and spanning forests of G whose connected components are rooted at their smallest vertices
- For every subtree T of G rooted at its numerically smallest vertex, assign an order $\hat{\pi}(T)$. Let $i<_{\hat{\pi}(T)} j$ denote i being smaller than j in this order

Almost-G-Parking Functions and Spanning Forests

- We explicity construct a bijection between almost-G-parking functions and spanning forests of G whose connected components are rooted at their smallest vertices
- For every subtree T of G rooted at its numerically smallest vertex, assign an order $\hat{\pi}(T)$. Let $i<_{\hat{\pi}(T)} j$ denote i being smaller than j in this order
- A choice of orders $\hat{\Pi}(G)$ is a super-proper set of tree orders if for each subtree T rooted at its numerically smallest vertex:
- if an edge $(i, j) \in T$, then $i>_{\hat{\pi}(T)} j$
- if t is a subtree of T with the same root, then the orders $\hat{\pi}(t)$ and $\hat{\pi}(T)$ are consistent

Almost-G-Parking Functions and Spanning Forests

- We explicity construct a bijection between almost-G-parking functions and spanning forests of G whose connected components are rooted at their smallest vertices
- For every subtree T of G rooted at its numerically smallest vertex, assign an order $\hat{\pi}(T)$. Let $i<_{\hat{\pi}(T)} j$ denote i being smaller than j in this order
- A choice of orders $\hat{\Pi}(G)$ is a super-proper set of tree orders if for each subtree T rooted at its numerically smallest vertex:
- if an edge $(i, j) \in T$, then $i>_{\hat{\pi}(T)} j$
- if t is a subtree of T with the same root, then the orders $\hat{\pi}(t)$ and $\hat{\pi}(T)$ are consistent
- Example: Breadth-first search order

Almost-G-Parking Functions and Spanning Forests

- Given a super-proper set of tree orders $\hat{\Pi}(G)$, for every spanning forest F of G whose connected components are rooted at their numerically smallest vertices, assign an order $\pi(F)$ such that $i<_{\pi(F)} j$ if:
- the root of i 's connected component is smaller than the root of j 's connected component, or
- i and j are in the same connected component T, and $i<_{\hat{\pi}(T)} j$

Almost-G-Parking Functions and Spanning Forests

- Fix a super-proper set of tree orders $\hat{\Pi}(G)$
- Let $e(F, i)$ be the edge out of i in the spanning forest F, if it exists
- Given a subforest F and order $\pi(F)$, for each vertex i, order the edges from i to F such that $\left(i, j_{1}\right)<_{\pi(F)}\left(i, j_{2}\right)$ if $j_{1}<_{\pi(F)} j_{2}$

Almost-G-Parking Functions and Spanning Forests

- Fix a super-proper set of tree orders $\hat{\Pi}(G)$
- Let $e(F, i)$ be the edge out of i in the spanning forest F, if it exists
- Given a subforest F and order $\pi(F)$, for each vertex i, order the edges from i to F such that $\left(i, j_{1}\right)<_{\pi(F)}\left(i, j_{2}\right)$ if $j_{1}<_{\pi(F)} j_{2}$
- Map each spanning forest F whose connected components are rooted at their numerically smallest vertices to (b_{1}, \ldots, b_{n}), where b_{i} is:
- the number of edges from i to vertices smaller than i in $\pi(F)$, if i is the root of its connected component
- the number of edges e from i such that $e<_{\pi(F)} e(F, i)$, otherwise

Almost-G-Parking Functions and Spanning Forests

- Fix a super-proper set of tree orders $\hat{\Pi}(G)$
- Let $e(F, i)$ be the edge out of i in the spanning forest F, if it exists
- Given a subforest F and order $\pi(F)$, for each vertex i, order the edges from i to F such that $\left(i, j_{1}\right)<_{\pi(F)}\left(i, j_{2}\right)$ if $j_{1}<_{\pi(F)} j_{2}$
- Map each spanning forest F whose connected components are rooted at their numerically smallest vertices to (b_{1}, \ldots, b_{n}), where b_{i} is:
- the number of edges from i to vertices smaller than i in $\pi(F)$, if i is the root of its connected component
- the number of edges e from i such that $e<_{\pi(F)} e(F, i)$, otherwise

Theorem

This mapping is a bijection between almost-G-parking functions and G 's spanning forests whose connected components are rooted at their numerically smallest vertices.

An Example

This corresponds to the almost- G-parking function $(0,2,1)$

Modified Monomial Ideals

For each nonempty $I \subseteq\{1, \ldots, n\}$, choose any $k_{I} \in I$ and let

$$
\hat{m}_{l}^{\prime}=x_{k_{l}} \prod_{i \in I} x_{i}^{d_{l}(i)}
$$

Let $\hat{\mathcal{I}}_{G}^{\prime}=\left\langle\hat{m}_{I}^{\prime}\right\rangle$ as I ranges over all nonempty subsets of $\{1, \ldots, n\}$, and let $\hat{\mathcal{A}}_{G}^{\prime}=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \hat{\mathcal{I}}_{G}^{\prime}$
Theorem
If $G=K_{n+1}$, then $\operatorname{dim} \hat{\mathcal{A}}_{G}^{\prime}$ is independent of the choices of k_{l}.

Future Directions

Conjecture

$\operatorname{dim} \hat{\mathcal{A}}_{G}^{\prime}$ is independent of the choices of k_{I} for all choices of k_{I} that preserve the monotonicity of the ideal $\hat{\mathcal{I}}_{G}^{\prime}$ (i.e. if $I \subset J$, then for any $\left.i \in I, \operatorname{deg}_{x_{i}} \hat{m}_{l}^{\prime} \geq \operatorname{deg}_{x_{i}} \hat{m}_{J}^{\prime}\right)$.
It would also be interesting to find a combinatorial interpretation of ideals in which the m_{l} are modified by multiplication by more than one variable

Acknowledgements

Many thanks to:

- My family, for always supporting me
- Wuttisak Trongsiriwat and Professor Alexander Postnikov, for their patience and guidance
- Dr. Slava Gerovitch, Dr. Tanya Khovanova, and the MIT-PRIMES staff, for giving me this opportunity

