Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem

Shyam Narayanan

Fourth Annual MIT-PRIMES Conference
Mentor: David Corwin
Project Proposed by Stefan Wehmeier and Ben Hinkle

May 17, 2014

Overview

(1) Introduction
(2) Purpose
(3) Results
(4) Problems and Conjectures
(5) Summary

Outline

(1) Introduction

(3) Results

4 Problems and Conjectures

(5) Summary

Primality Test

Definition

A primality test is an algorithm for determining whether an input number is prime.

- Trial division: divide n by every number from 2 until $n-1$
- Deterministic Primality Tests: Always accurate, but slower
- Probabilistic Primality Tests: faster, but are not accurate.

Fermat Primality Test

- Probabilistic primality test to determine whether a number is a probable prime.
- Fermat's Little Theorem states that $x^{p-1} \equiv 1(\bmod p)$ for all x relatively prime to a prime p.
- Implementation:
- For arbitrary integer n, pick random x, where $1 \leq x<n$.
- If $x^{n-1} \not \equiv 1(\bmod n)$, then n is composite.
- If not, then n is probably prime.

False Witnesses

Definition

For integers n and x with $1 \leq x<n$, we say x is a false witness to n if n is composite but the Fermat primality test states that n is probably prime in base x.

Weakness of Fermat Primality Test

- High rate of false witnesses
- Carmichael numbers - for any Carmichael number n, every x relatively prime to n is a false witness
- Infinitely many Carmichael numbers

The Miller-Rabin Primality Test

- Stronger version of the Fermat Primality Test.
- Implementation:
- Write an odd integer n as $n=1+2^{e} \cdot d$, where d is odd.
- Then for an integer $x(1 \leq x<n)$, if $x^{d} \equiv 1(\bmod n)$, or $x^{d \cdot 2^{i}} \equiv-1$ for some $0 \leq i \leq e-1$, then n is probably prime.
- Else, the integer n is composite.
- Running time: $O\left(\log ^{2}(n) \cdot \log (\log (n)) \cdot \log (\log (\log (n)))\right)$.
- More accurate than the Fermat primality test but still not always accurate.

Definitions

Strong Psuedoprime and Nonwitness

- If n is composite and $1 \leq x<n$, we say n is a strong pseudoprime to the base x if the Miller-Rabin primality test outputs n as probably prime in base x.
- In this case, we say x is a nonwitness to n.
- Else, we say x is a witness to n.
- Nonwitness for Miller-Rabin, False witness for Fermat

NW(n)

We define $N W(n)$ as the number of nonwitnesses of n.

Sample Test

- Suppose $n=91$ and $x=4$.
- $91=1+2^{1} .45$.
- $4^{45} \equiv 64(\bmod 91)$, and $4^{90} \equiv 1(\bmod 91)$.
- 4 is a false witness for the Fermat Primality Test.
- But it is a witness for the Miller Rabin test.

Outline

(1) Introduction

(2) Purpose

(3) Results

4 Problems and Conjectures

(5) Summary

Purpose of this Research

- For very large integers, deterministic primality tests are slow and probabilistic primality tests tend to be very inaccurate.
- For example, the probabilistic Miller-Rabin Primality Test often fails to detect composite integers.
- The main goal of this project is to create an improved primality test based on Miller-Rabin.
- The idea: eliminate certain special forms of composite numbers that have many nonwitnesses.
- This research has important applications, as it reduces the number of Miller-Rabin iterations needed.

Outline

(1) Introduction

(2) Purpose
(3) Results

4 Problems and Conjectures

(5) Summary

Accuracy of Miller-Rabin Test

- The Miller-Rabin Primality Test has significantly fewer nonwitnesses than the Fermat Primality Test.
- Michael O. Rabin proved the following theorem in 1980:

Theorem 1 (Miller-Rabin Theorem)

- Suppose $\frac{N W(n)}{\varphi(n)}=M(n)$.
- Then $M(n) \leq \frac{1}{4}$.

Formula for NW(n)

- Explicit formula for the number of nonwitnesses of n given n 's prime factorization.
- This formula was previously stated by Charles R. Greathouse IV, but an original proof is presented in my research paper.

Theorem 2

- Consider an odd composite integer n with m distinct prime factors.
- Suppose that $n-1=2^{e} \cdot d$ and d is odd.
- Also suppose that $n=\prod_{i=1}^{m} p_{i}^{q_{i}}$, and each p_{i} can be expressed as $2^{e_{i}} \cdot d_{i}+1$, where each d_{i} is odd.
- The number of nonwitnesses $N W(n)$ equals $\left(\frac{\left.2^{\min (} e_{i}\right) \cdot m}{2^{m}-1}+1\right) \cdot \prod_{i=1}^{m} \operatorname{gcd}\left(d, d_{i}\right)$.

Extension of the Miller-Rabin Theorem

Theorem 3 (Main Theorem)

- $M(n)=\frac{1}{4}$ if and only if n is one of two forms:
(1) $n=(2 x+1)(4 x+1)$, where x is odd and $2 x+1$ and $4 x+1$ are prime
(2) n is a Carmichael Number of the form pqr, where p, q, r are distinct primes $\equiv 3(\bmod 4)$.
- $\frac{1}{6}<M(n)<\frac{1}{4}$ if and only if $n=(2 x+1)(4 x+1)$, where x is even and $2 x+1,4 x+1$ are prime.
- $M(n)=\frac{1}{6}$ if and only if n is of the form $(2 x+1)(6 x+1)$, where x is odd and $2 x+1,6 x+1$ are prime.
- Else, $M(n) \leq \frac{5}{32}$.

New Test

(1) Determine if n is of the form $(2 x+1)(4 x+1)$ for some integer x.
(2) Determine if n is of the form $(2 x+1)(6 x+1)$ for some integer x.
(3) Determine if n is a Carmichael number of the form pqr, where $p, q, r \equiv 3(\bmod 4)$.
(1) Perform the Miller-Rabin Test for a certain base.

Experimental Results about Nonwitnesses

- Define n_{a} as the smallest composite n so that the first a prime numbers are all nonwitnesses to n.
- All of n_{1}, \ldots, n_{11} are one of two forms:
(1) $(x+1)(k x+1)$, where $2 \leq k \leq 5$
(2) Carmichael numbers $p q r$, where $p, q, r \equiv 3(\bmod 4)$
- Of the 3773 strong pseudoprimes less than $4 \cdot 10^{12}, 3187$ of them were of the form $(x+1)(k x+1)$, where k is an integer and $x+1$ and $k x+1$ are primes.

Outline

(1) Introduction

(2) Purpose
(3) Results
(4) Problems and Conjectures
(5) Summary

Checking for Carmichael numbers

- There is currently no fast way to check if a number is a Carmichael number.
- However, if n is a Carmichael number of the form pqr, where p, q, r are primes $\equiv 3(\bmod 4)$, the following is true:

Lemma Regarding Nonwitnesses

A positive integer x is a nonwitness to n if and only if $\left(\frac{x}{p}\right)=\left(\frac{x}{q}\right)=\left(\frac{x}{r}\right)$

Choosing bases

- Alford, Granville, and Pomerance proved the following Theorem:

Theorem 4

For large enough integers A, and for any set S of $\left\lfloor\log (A)^{1 /(3 \cdot \log \log \log A)}\right\rfloor$ integers, there are at least $A^{1 /(35 \cdot \log \log \log (A))}$ Carmichael numbers $n \leq A$ such that i is a nonwitness to n for all $i \in S$.

- Unfortunately, this implies that for any set S of integers, there are infinitely many n for which every element of S is a nonwitness.
- However, certain bases can be chosen to minimize error.

Open Question

- If the Generalized Riemann Hypothesis is true, then for all composite odd n, there exists an integer $i<2 \cdot \log ^{2}(n)$ such that i is a witness.
- For numbers not of the 3 forms given at the outline of the new test, does this bound shrink?

Outline

(1) Introduction
 (2) Purpose
 (3) Results
 4 Problems and Conjectures

(5) Summary

Summary and Next Steps

- In this research, we presented a proof for the number of nonwitnesses for n.
- Also, the number of nonwitnesses for a composite odd integer n has been reduced to $\frac{5}{32} \cdot \varphi(n)$, except for a few specific forms of n.
- However, our new primality test requires a method to eliminate effectively Carmichael numbers of the form pqr, where p, q, r are primes $\equiv 3(\bmod 4)$.
- This project is expected to be implemented in MATLAB.

Acknowledgements

- I would like to thank my mentor, David Corwin, for the help he has provided me this year, from MATLAB implementations to checking my theorems and progress.
- I would also like to thank Dr. Tanya Khovanova, the lead mentor, for general guidance.
- I would like to thank Stefan Wehmeier and Ben Hinkle from MathWorks, who proposed this project and helped me with MATLAB.
- Finally, I would like to thank the PRIMES-USA program for making this research possible and my parents for all the support they have provided me over the years.

References

- Rabin, Michael O. (1980), "Probabilistic algorithm for testing primality", Journal of Number Theory 12 (1): 128138
- https://oeis.org/A141768
- Carl Pomerance, John L. Selfridge, Samuel S. Wagstaff, Jr. (July 1980). "The pseudoprimes to $25 \cdot 10^{9 "}$. Mathematics of Computation 35 (151): 10031026.
- W.R. Alford, A. Granville and C. Pomerance. "On the Difficulty of Finding Reliable Witnesses". Algorithmic Number Theory, Lecture Notes in Comput. Sci. 877, Springer, Berlin, 1994, 1-16.
- E. Bach, Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms, MIT Press, Cambridge, Mass., 1985.

