

On the Existence of Srg(99, 14, 1, 2)

By Andrew He, Suzy Lou, and Max Murin

Mentor: Dr. Peter Csikvari

Fourth Annual PRIMES Conference

Progress on idea 1

With this labeling, structural features of srg(99, 14, 1, 2) are tied to decompositions of srg(14, 12, 10, 12) into disjoint polygons (Note: srg(14, 12, 10, 12) is simply the complete graph on 14 vertices, minus 7 disjoint edges

Thank • Dr. Peter Csikvari, o suggested o • PRIMI

On the Existence of Srg(99, 14, 1, 2)

By Andrew He, Suzy Lou, and Max Murin

Mentor: Dr. Peter Csikvari

Fourth Annual PRIMES Conference

Definitions:

Strongly Regular Graph:
An srg(v, k, a, b) is a graph with v
vertices, each of degree k. Every
pair of adjacent vertices have a
common neighbors. Every
pair of non-adjacent vertices have b
common neighbors.

Example

A quadrilateral: srg(4, 2, 0, 2)! Each vertex has degree 2, adjacent vertices share no neighbors, nonadjacent vertices share 2 neighbors

Example

A quadrilateral: srg(4, 2, 0, 2)! Each vertex has degree 2, adjacent vertices share no neighbors, nonadjacent vertices share 2 neighbors

Example: Complete Graphs

- Each vertex has same degree
- Each pair of vertices (hence each pair of adjacent vertices) shares same number of vertices in common
- There are no non-adjacent vertices, so the last condition is trivially met
 - (Though this triviality leads some to exclude complete graphs from strongly regular graphs)

Example

The Petersen graph is srg(10, 3, 0, 1).

Another Example

Srg(16, 6, 2, 2)
Use a clever labeling
Take the sixteen points of $(\mathbb{Z}/4\mathbb{Z})^2$ Let (a, b) be connected to (c, d) iff a = c or b = d. Then, every point has six neighbors, so k = 6.
(Verification of other conditions is left as an exercise :)

More definitions

Fano plane:

A set of 7 "lines" that each contain three points that come from a set of seven points. Any two lines intersect in exactly one point.

Motivation: As seen before, a clever labeling can be helpful A Fano-Plane may provide a useful labeling

Traditional Picture of a Fano Plane

Our project: What about srg(99, 14, 1, 2)?

Does it exist?

Thoughts:
Two unconnected vertices define a
quadrilateral

More Thoughts

Because of the third parameter (1), every edge is a part of exactly one triangle

Implication: the fourteen neighbors of a vertex are grouped into seven triangles

(i.e. each vertex is hinged on seven triangles)

More Thoughts

Because of the third parameter (1), every edge is a part of exactly one triangle

Implication: the fourteen neighbors of a vertex are grouped into seven triangles

(i.e. each vertex is hinged on seven triangles)

Possible labelings

1. Call a central vertex V and its fourteen neighbors 1, 2, ..., 14. Let vertex 1 be connected to 2, 3 to 4, etc.
 2. Given a set of seven elements, there exist two disjoint sets of 15 Fano-planes with points from that set. Let a vertex and its fourteen neighbors be labeled with 15 Fano-planes in a set.
 3. Use the fact that the graph, if it exists, has a triangle decomposition. Examine the triangles.

Examine the largest independent
 set

Possible labelings

- 1. Call a central vertex V and its fourteen neighbors 1, 2, ..., 14. Let vertex 1 be connected to 2, 3 to 4, etc.
- 2. Given a set of seven elements, there exist two disjoint sets of 15 Fano-planes with points from that set. Let a vertex and its fourteen neighbors be labeled with 15 Fano-planes in a set.
- 3. Use the fact that the graph, if it exists, has a triangle decomposition. Examine the triangles.
 - 4. Examine the largest independent set

With this labeling, structural features of srg(99, 14, 1, 2) are tied to decompositions of srg(14, 12, 10, 12) into disjoint polygons (Note: srg(14, 12, 10, 12) is simply the complete graph on 14 vertices, minus 7 disjoint edges

More on idea 1

- The most obvious polygonal split of the graph is a certain quadrilateral split
- However, this quadrilateral split did not translate into a viable structure in the graph

More on idea 1

- The most obvious polygonal split of the graph is a certain quadrilateral split
- However, this quadrilateral split did not translate into a viable structure in the graph

- Thoughts: create "rules" for two vertices to be connected
- Difficult to create "rules" that do not break the parameters of the problem

- Thoughts: create "rules" for two vertices to be connected
- Difficult to create "rules" that do not break the parameters of the problem

Idea is based on the fact that every vertex is hinged upon seven triangles; examine structure of triangles

- Triangles are classified by distance from a central triangle ${\cal V}$
- γ : number of triangles with exactly vertices of distance 1 from V, with integer values from 0 to 12

- Conjecture: γ equal for all triangles
- Lemma: γ ≠ 11
 γ=12 seems dubious
- Tentatively, Idea 3 solves the problem (solution has not been verified and may be wrong)

- Conjecture: γ equal for all triangles
 - Lemma: $\gamma \neq 11$
 - γ =12 seems dubious
- Tentatively, Idea 3 solves the problem (solution has not been verified and may be wrong)

- Examine largest independent set *I*
- Upper bound for size of *I*: 22
 - Conjecture: I has size 22

Progress on Idea 4

• Theorem: If *I* indeed has the maximum theoretical size (22) each vertex not in *I* is connected to exactly 4 vertices in *I*.

• Theorem: If *I* indeed has the maximum theoretical size (22) each vertex not in *I* is connected to exactly 4 vertices in *I*.

Proof of claim

- Let *I* be of size *n*.
- Set, S, of all vertices that are a neighbor of at least one member of I has size 99-n
 - Number of edges between *I* and *S*: 14*n*
- Let s=vertex in S. F(s)=number of edges between S and I adjacent to

S.

$$\sum_{s} F(s) = 14n$$

· 2 nonadjacent vertices share 2 neighbors, so

$$\sum_{s} {F(s) \choose 2} = 2 {n \choose 2} = n^2 - n$$
• Then
$$\sum_{s} F(s)^2 = 2n^2 + 12n$$

Proof of Claim (cont.)

By the RMS-AM inequality, this turns into

$$-n^2-5n+594\geq 0$$

- · Equality holds when all elements are equa-
- I.e. every element of S is connected to same number of vertices in I

Progress on Idea 4

Consequence version of I are be placed into Polació of secifica any ser existica in It. dues ser ser librar la transitation of the consequence of the consequence

Proof of Claim (cont.)

By the RMS-AM inequality, this turns into

$$-n^2 - 5n + 594 \ge 0$$

 $-27 \le n \le 22$

- Equality holds when all elements are equal
- I.e. every element of *S* is connected to same number of vertices in *I*

- Consequences: vertices of I can be placed into "blocks" of size 4.
- For any two vertices in I, there are two blocks that contain both of them.
- There are not many ways to arrange blocks in the specified way
- These blocks may give lots of help with structure

- Consequences: vertices of I can be placed into "blocks" of size 4.
- For any two vertices in I, there are two blocks that contain both of them.
 - There are not many ways to arrange blocks in the specified way
- These blocks may give lots of help with structure

Acknowledgements

Thanks to:

- Dr. Peter Csikvari, our mentor (who also suggested our problem)
 - PRIMES-USA

