Cylindric Young Tableaux and their Properties

Eric Neyman (Montgomery Blair High School) Mentor: Darij Grinberg (MIT)

Fourth Annual MIT PRIMES Conference May 17, 2014

Introduction

- Young tableaux
- Cylindric tableaux
- Schur polynomials

- A partition λ of a nonnegative integer n is a tuple $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that $\sum_{i=1}^k \lambda_i = n$ and $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k > 0$.
- For example, a partition of 10 is (5,2,2,1).

- A partition λ of a nonnegative integer n is a tuple $(\lambda_1, \lambda_2, \dots, \lambda_k)$ such that $\sum_{i=1}^k \lambda_i = n$ and $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k > 0$.
- For example, a partition of 10 is (5,2,2,1).
- Partitions can be represented with boxes (Young diagrams):

Young Tableaux

- We can fill in Young diagrams boxes with numbers.
- If entries strictly increase from top to bottom and weakly increase from left to right, we have a *semistandard Young tableau* (henceforth, *tableau*).

1	1	2	2	5
3	6			
7	7			
9				

Young Tableaux

- We can fill in Young diagrams boxes with numbers.
- If entries strictly increase from top to bottom and weakly increase from left to right, we have a *semistandard Young tableau* (henceforth, *tableau*).

1	1	2	2	5
3	6			
7	7			
9		•		

- If a tableau T is the Young diagram of a partition λ with its boxes filled, we say that λ is the shape of T.
- In the example above, the shape of the tableau is (5,2,2,1).

Skew Young Diagrams and Skew Tableaux

- Given two partitions λ and μ, with μ inside λ, the skew Young diagram λ/μ consists of the boxes inside the Young diagram of λ but outside the Young diagram of μ.
- Example:
 - λ = (5, 3, 2)
 - $\mu = (2, 1)$
 - $\lambda/\mu = (5,3,2)/(2,1)$
 - Young diagram of λ/μ :

Skew Young Diagrams and Skew Tableaux

- Given two partitions λ and μ, with μ inside λ, the skew Young diagram λ/μ consists of the boxes inside the Young diagram of λ but outside the Young diagram of μ.
- Example:
 - λ = (5, 3, 2)
 - $\mu = (2, 1)$
 - λ/μ = (5,3,2)/(2,1)
 - Young diagram of λ/μ :

- A *skew tableau* is a skew Young diagram with its boxes filled according to the same rules as regular tableaux.
- Example:

Cylindric Tableaux

- A cylindric tableau is an "infinite" skew tableau where every row repeats if you go k rows down but move m steps to the left, for some fixed k and m.
- Corresponding entries are considered the *same entry*, because we can think of them as corresponding to the same place on a cylinder.

•

Cylindric Tableaux

- A cylindric tableau is an "infinite" skew tableau where every row repeats if you go k rows down but move m steps to the left, for some fixed k and m.
- Corresponding entries are considered the *same entry*, because we can think of them as corresponding to the same place on a cylinder.

Cylindric Partitions

- A cylindric partition is a "periodic", weakly decreasing sequence of integers.
- It can be represented as a Young diagram that extends infinitely far left.
- A cylindric tableau is bounded by two cylindric partitions.
- Corresponding boxes in a partition are actually the same box.

Schur Polynomials

- Let T be a tableau with entries from $\{1, 2, \ldots, n\}$.
- If T has μ_k k's for $1 \le k \le n$, then the *content* of T is the tuple $(\mu_1, \mu_2, \ldots, \mu_n)$.

Schur Polynomials

- Let T be a tableau with entries from $\{1, 2, \ldots, n\}$.
- If T has μ_k k's for $1 \le k \le n$, then the *content* of T is the tuple $(\mu_1, \mu_2, \dots, \mu_n)$.
- The Schur polynomial of a partition λ in *n* variables, denoted $s_{\lambda}(x_1, x_2, ..., x_n)$, is obtained by:
 - taking, for each tableau T of shape λ , the monomial $x_1^{\mu_1} x_2^{\mu_2} \dots x_n^{\mu_n}$, where $(\mu_1, \mu_2, \dots, \mu_n)$ is the content of T, adding these monomials together.
- Example:
 - λ = (2, 1)
 - *n* = 3

Schur Polynomials

- Let T be a tableau with entries from $\{1, 2, \ldots, n\}$.
- If T has μ_k k's for $1 \le k \le n$, then the *content* of T is the tuple $(\mu_1, \mu_2, \dots, \mu_n)$.
- The Schur polynomial of a partition λ in n variables, denoted s_λ(x₁, x₂,..., x_n), is obtained by:
 - taking, for each tableau T of shape λ , the monomial $x_1^{\mu_1} x_2^{\mu_2} \dots x_n^{\mu_n}$, where $(\mu_1, \mu_2, \dots, \mu_n)$ is the content of T, a adding these monomials together
 - adding these monomials together.
- Example:
 - λ = (2, 1)
 - *n* = 3

- $s_{\lambda}(x_1, x_2, x_3) = x_1^2 x_2 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2$
- Notice: s_{λ} is symmetric!

Theorem

For regular, skew, and cylindric tableaux, Schur polynomials are

• This is the same as proving that the number of tableaux of a given shape and content doesn't change when you permute the content.

Proof of Schur Polynomial Symmetry (1)

- This is the same as proving that the number of tableaux of a given shape and content doesn't change when you permute the content.
- It suffices to show that the number of tableaux with content (k₁, k₂,..., k_i, k_{i+1},..., k_n) is the same as the number of tableaux with content (k₁, k₂,..., k_{i+1}, k_i,..., k_n) for any 1 ≤ i < n.

- We will create a bijection (Bender-Knuth involution). Here's an example:
 - Let i = 2 and T be the following tableau:

- Leave the white and blue boxes alone.
- Reverse the number of green and red boxes in each row:

- We will create a bijection (Bender-Knuth involution). Here's an example:
 - Let i = 2 and T be the following tableau:

- Leave the white and blue boxes alone.
- Reverse the number of green and red boxes in each row:

• This is a bijection, since re-applying the transformation gives back T.

- We will create a bijection (Bender-Knuth involution). Here's an example:
 - Let i = 2 and T be the following tableau:

- Leave the white and blue boxes alone.
- Reverse the number of green and red boxes in each row:

- This is a bijection, since re-applying the transformation gives back T.
- This proof also works for skew and cylindric tableaux.

Horizontal and Vertical Strips: Definition

A *horizontal i-strip* is a set of *i* boxes, none of which are in the same column. (Example: _____)
A *vertical i-strip* is a set of *i* boxes, none of which are in the same row. (Example: ____)

- A *horizontal i-strip* is a set of *i* boxes, none of which are in the same column. (Example:
- A *vertical i-strip* is a set of *i* boxes, none of which are in the same row. (Example:
- *h_i*(λ) is the formal sum of all partitions you can get after **attaching** a horizontal *i*-strip to λ.
- e_i(λ) is the formal sum of all partitions you can get after attaching a vertical *i*-strip to λ.
- h^{*}_i(λ) is the formal sum of all partitions you can get after removing a horizontal *i*-strip from λ.
- e^{*}_i(λ) is the formal sum of all partitions you can get after removing a vertical *i*-strip from λ.

Theorem

h and e commute with each other and with themselves.

•
$$h_j(h_i(\lambda)) = h_i(h_j(\lambda))$$

•
$$e_j(e_i(\lambda)) = e_i(e_j(\lambda))$$

• $h_j(e_i(\lambda)) = e_i(h_j(\lambda))$

Similarly, h* and e* commute with each other and with themselves.

Proof that *h* **Commutes with Itself (1)**

- Consider $h_j(h_i(\lambda))$ for any j, i, and λ .
- Let μ be λ with the horizontal *i*-strip added.
- Let ν be μ with the horizontal *j*-strip added.
- Consider the Young diagram of ν/λ .
 - Fill the boxes of μ/λ with 1's.
 - Fill the boxes of ν/μ with 2's.
- Example:
 - λ = (5, 4, 4, 1)
 - *i* = 5
 - *j* = 6
 - One summand of $h_j(h_i(\lambda))$:

• Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_j(h_i(\lambda))$ is the number of skew tableaux of shape ν/λ with *i* 1's and *j* 2's.

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_j(h_i(\lambda))$ is the number of skew tableaux of shape ν/λ with *i* 1's and *j* 2's.
- Since Schur polynomials are symmetric, this is the same as the number of skew tableaux of shape ν/λ with *j* 1's and *i* 2's.

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_j(h_i(\lambda))$ is the number of skew tableaux of shape ν/λ with *i* 1's and *j* 2's.
- Since Schur polynomials are symmetric, this is the same as the number of skew tableaux of shape ν/λ with *j* 1's and *i* 2's.
- Therefore, $h_j(h_i(\lambda)) = h_i(h_j(\lambda))$.

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_j(h_i(\lambda))$ is the number of skew tableaux of shape ν/λ with *i* 1's and *j* 2's.
- Since Schur polynomials are symmetric, this is the same as the number of skew tableaux of shape ν/λ with *j* 1's and *i* 2's.
- Therefore, $h_j(h_i(\lambda)) = h_i(h_j(\lambda))$.
- This proof also works for cylindric partitions.

• For regular partitions, neither h nor e commute with either h^* or e^* .

Commutativity of h and e with h^* and e^*

- For regular partitions, neither h nor e commute with either h^* or e^* .
- Example:

•
$$h_1(h_1^*(\square)) = h_1(\square) = \square + \square$$

• $h_1^*(h_1(\square)) = h_1^*(\square + \square) = \square + \square + \square$

Commutativity of h and e with h^* and e^*

- For regular partitions, neither h nor e commute with either h^* or e^* .
- Example:

•
$$h_1(h_1^*(\square)) = h_1(\square) = \square + \square$$

• $h_1^*(h_1(\square)) = h_1^*(\square + \square) = \square + \square + \square$

Theorem

For cylindric partitions, h and e commute with h^* and e^* .

Commutativity of h and e with h^* and e^*

- For regular partitions, neither h nor e commute with either h^* or e^* .
- Example:

•
$$h_1(h_1^*(\square)) = h_1(\square) = \square + \square$$

• $h_1^*(h_1(\square)) = h_1^*(\square + \square) = \square + \square + \square$

Theorem

For cylindric partitions, h and e commute with h^* and e^* .

• The fact that there are nice properties of cylindric tableaux that don't exist for regular tableaux is encouraging.

Goals

- Goal 1: extend notions applicable to regular tableaux to cylindric tableaux.
 - Cylindric tableau product (different equivalent methods for regular tableau products yield different results for cylindric tableaux)
 - Robinson-Schensted-Knuth Correspondence (bijection between matrices and pairs of tableaux)
 - Various combinatorial identities

Goals

- Goal 1: extend notions applicable to regular tableaux to cylindric tableaux.
 - Cylindric tableau product (different equivalent methods for regular tableau products yield different results for cylindric tableaux)
 - Robinson-Schensted-Knuth Correspondence (bijection between matrices and pairs of tableaux)
 - Various combinatorial identities
- Goal 2: find useful notions applicable to cylindric tableaux but not to regular tableaux.
 - Commutativity of h, e, h^* , and e^*

Goals

- Goal 1: extend notions applicable to regular tableaux to cylindric tableaux.
 - Cylindric tableau product (different equivalent methods for regular tableau products yield different results for cylindric tableaux)
 - Robinson-Schensted-Knuth Correspondence (bijection between matrices and pairs of tableaux)
 - Various combinatorial identities
- Goal 2: find useful notions applicable to cylindric tableaux but not to regular tableaux.
 - Commutativity of h, e, h^* , and e^*
- Goal 3: find applications of cylindric tableaux to other parts of math.
 - Regular tableaux have a variety of applications in combinatorics and abstract algebra.
 - Very few, if any, applications are known for cylindric tableaux.

- Darij Grinberg (my mentor), for introducing me to various topics in tableau theory and answering all of my questions.
- Pavel Etingof, Slava Gerovitch, and Tanya Khovanova, for organizing PRIMES.
- Alexander Postnikov, for helping to come up with the project.