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Partitions and Young Diagrams

A partition λ of a nonnegative integer n is a tuple (λ1, λ2, . . . , λk)

such that
k∑

i=1

λi = n and λ1 ≥ λ2 ≥ . . . ≥ λk > 0.

For example, a partition of 10 is (5, 2, 2, 1).

Partitions can be represented with boxes (Young diagrams):
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Young Tableaux

We can fill in Young diagrams boxes with numbers.

If entries strictly increase from top to bottom and weakly increase
from left to right, we have a semistandard Young tableau (henceforth,
tableau).

1 1 2 2 5

3 6

7 7

9

If a tableau T is the Young diagram of a partition λ with its boxes
filled, we say that λ is the shape of T .

In the example above, the shape of the tableau is (5, 2, 2, 1).
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Skew Young Diagrams and Skew Tableaux

Given two partitions λ and µ, with µ inside λ, the skew Young
diagram λ/µ consists of the boxes inside the Young diagram of λ but
outside the Young diagram of µ.

Example:

λ = (5, 3, 2)
µ = (2, 1)
λ/µ = (5, 3, 2)/(2, 1)
Young diagram of λ/µ:

A skew tableau is a skew Young diagram with its boxes filled
according to the same rules as regular tableaux.

Example: 1 2 2

3 3

2 4
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Cylindric Tableaux

A cylindric tableau is an “infinite” skew tableau where every row repeats if
you go k rows down but move m steps to the left, for some fixed k and m.

Corresponding entries are considered the same entry, because we can think

of them as corresponding to the same place on a cylinder.

. .
.

2 3 5 8
1 4 4
5 5
6

1 7
2 3 5 8

1 4 4
5 5
6

1 7

. .
.
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Cylindric Partitions

A cylindric partition is a “periodic”, weakly decreasing sequence of integers.
It can be represented as a Young diagram that extends infinitely far left.
A cylindric tableau is bounded by two cylindric partitions.

Corresponding boxes in a partition are actually the same box.

. .
.

...

...

...

...

...

...

...

...

...

6
4
2
2
2
2
1
1
−1
−3
−3
−3
−3
−4

. .
.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6
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Schur Polynomials

Let T be a tableau with entries from {1, 2, . . . , n}.
If T has µk k ’s for 1 ≤ k ≤ n, then the content of T is the tuple
(µ1, µ2, . . . , µn).

The Schur polynomial of a partition λ in n variables, denoted

sλ(x1, x2, . . . , xn), is obtained by:

taking, for each tableau T of shape λ, the monomial
xµ1
1 xµ2

2 . . . xµn
n , where (µ1, µ2, . . . , µn) is the content of T ,

adding these monomials together.
Example:

λ = (2, 1)

n = 3
1 1
2

1 2
2

1 3
2

1 1
3

1 2
3

1 3
3

2 2
3

2 3
3

sλ(x1, x2, x3) = x21 x2 + x1x
2
2 + 2x1x2x3 + x21 x3 + x1x

2
3 + x22 x3 + x2x

2
3

Notice: sλ is symmetric!

Theorem

For regular, skew, and cylindric tableaux, Schur polynomials are
symmetric.
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Proof of Schur Polynomial Symmetry (1)

This is the same as proving that the number of tableaux of a given
shape and content doesn’t change when you permute the content.

It suffices to show that the number of tableaux with content
(k1, k2, . . . , ki , ki+1, . . . , kn) is the same as the number of tableaux
with content (k1, k2, . . . , ki+1, ki , . . . , kn) for any 1 ≤ i < n.
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Proof of Schur Polynomial Symmetry (2)

We will create a bijection (Bender-Knuth involution). Here’s an
example:

Let i = 2 and T be the following tableau:

1 1 1 1 1 1 1 1 2 2 2 2 3 3

1 2 2 2 2 2 2 3 3 3 3 5 6

3 3 3 4 5 5 5

Leave the white and blue boxes alone.
Reverse the number of green and red boxes in each row:

1 1 1 1 1 1 1 1 2 2 2 2 2 3

1 2 2 2 3 3 3 3 3 3 3 5 6

2 3 3 4 5 5 5

This is a bijection, since re-applying the transformation gives back T .

This proof also works for skew and cylindric tableaux.
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Horizontal and Vertical Strips: Definition

A horizontal i-strip is a set of i boxes, none of which are in the same
column. (Example: )

A vertical i-strip is a set of i boxes, none of which are in the same
row. (Example: )

hi (λ) is the formal sum of all partitions you can get after attaching a
horizontal i-strip to λ.

ei (λ) is the formal sum of all partitions you can get after attaching a
vertical i-strip to λ.

h∗i (λ) is the formal sum of all partitions you can get after removing a
horizontal i-strip from λ.

e∗i (λ) is the formal sum of all partitions you can get after removing a
vertical i-strip from λ.
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Horizontal and Vertical Strips: Example

λ = (3, 1)
h2(λ) = + + + +

e2(λ) = + + +

h∗2(λ) = +

e∗2(λ) =

Theorem

h and e commute with each other and with themselves.

hj(hi (λ)) = hi (hj(λ))

ej(ei (λ)) = ei (ej(λ))

hj(ei (λ)) = ei (hj(λ))

Similarly, h∗ and e∗ commute with each other and with themselves.
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Proof that h Commutes with Itself (1)

Consider hj(hi (λ)) for any j , i , and λ.

Let µ be λ with the horizontal i-strip added.

Let ν be µ with the horizontal j-strip added.

Consider the Young diagram of ν/λ.

Fill the boxes of µ/λ with 1’s.
Fill the boxes of ν/µ with 2’s.

Example:

λ = (5, 4, 4, 1)
i = 5
j = 6

One summand of hj(hi (λ)): 1 1 2
1 2
2

1 1 2
2 2
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Proof that h Commutes with Itself (2)

1 1 2
1 2
2

1 1 2
2 2

Since we can do this for every pair of horizontal strips that is added,
the number of times ν is in hj(hi (λ)) is the number of skew tableaux
of shape ν/λ with i 1’s and j 2’s.

Since Schur polynomials are symmetric, this is the same as the
number of skew tableaux of shape ν/λ with j 1’s and i 2’s.

Therefore, hj(hi (λ)) = hi (hj(λ)).

This proof also works for cylindric partitions.

14 / 17



Proof that h Commutes with Itself (2)

1 1 2
1 2
2

1 1 2
2 2

Since we can do this for every pair of horizontal strips that is added,
the number of times ν is in hj(hi (λ)) is the number of skew tableaux
of shape ν/λ with i 1’s and j 2’s.

Since Schur polynomials are symmetric, this is the same as the
number of skew tableaux of shape ν/λ with j 1’s and i 2’s.

Therefore, hj(hi (λ)) = hi (hj(λ)).

This proof also works for cylindric partitions.

14 / 17



Proof that h Commutes with Itself (2)

1 1 2
1 2
2

1 1 2
2 2

Since we can do this for every pair of horizontal strips that is added,
the number of times ν is in hj(hi (λ)) is the number of skew tableaux
of shape ν/λ with i 1’s and j 2’s.

Since Schur polynomials are symmetric, this is the same as the
number of skew tableaux of shape ν/λ with j 1’s and i 2’s.

Therefore, hj(hi (λ)) = hi (hj(λ)).

This proof also works for cylindric partitions.

14 / 17



Proof that h Commutes with Itself (2)

1 1 2
1 2
2

1 1 2
2 2

Since we can do this for every pair of horizontal strips that is added,
the number of times ν is in hj(hi (λ)) is the number of skew tableaux
of shape ν/λ with i 1’s and j 2’s.

Since Schur polynomials are symmetric, this is the same as the
number of skew tableaux of shape ν/λ with j 1’s and i 2’s.

Therefore, hj(hi (λ)) = hi (hj(λ)).

This proof also works for cylindric partitions.

14 / 17



Commutativity of h and e with h∗ and e∗

For regular partitions, neither h nor e commute with either h∗ or e∗.

Example:

h1(h∗1( )) = h1( ) = +

h∗1(h1( )) = h∗1( + ) = + +

Theorem

For cylindric partitions, h and e commute with h∗ and e∗.

The fact that there are nice properties of cylindric tableaux that don’t
exist for regular tableaux is encouraging.
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Goals

Goal 1: extend notions applicable to regular tableaux to cylindric
tableaux.

Cylindric tableau product (different equivalent methods for
regular tableau products yield different results for cylindric
tableaux)
Robinson-Schensted-Knuth Correspondence (bijection between
matrices and pairs of tableaux)
Various combinatorial identities

Goal 2: find useful notions applicable to cylindric tableaux but not to
regular tableaux.

Commutativity of h, e, h∗, and e∗

Goal 3: find applications of cylindric tableaux to other parts of math.

Regular tableaux have a variety of applications in combinatorics
and abstract algebra.
Very few, if any, applications are known for cylindric tableaux.
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