Cylindric Young Tableaux and their Properties

Eric Neyman (Montgomery Blair High School)
Mentor: Darij Grinberg (MIT)

Fourth Annual MIT PRIMES Conference May 17, 2014

Introduction

- Young tableaux
- Cylindric tableaux
- Schur polynomials

Partitions and Young Diagrams

- A partition λ of a nonnegative integer n is a tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\sum_{i=1}^{k} \lambda_{i}=n$ and $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}>0$.
- For example, a partition of 10 is $(5,2,2,1)$.

Partitions and Young Diagrams

- A partition λ of a nonnegative integer n is a tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ such that $\sum_{i=1}^{k} \lambda_{i}=n$ and $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}>0$.
- For example, a partition of 10 is (5, 2, 2, 1).
- Partitions can be represented with boxes (Young diagrams):

Young Tableaux

- We can fill in Young diagrams boxes with numbers.
- If entries strictly increase from top to bottom and weakly increase from left to right, we have a semistandard Young tableau (henceforth, tableau).

Young Tableaux

- We can fill in Young diagrams boxes with numbers.
- If entries strictly increase from top to bottom and weakly increase from left to right, we have a semistandard Young tableau (henceforth, tableau).

1	1	2	2	5	
3	6				
7	7				
9					

- If a tableau T is the Young diagram of a partition λ with its boxes filled, we say that λ is the shape of T.
- In the example above, the shape of the tableau is $(5,2,2,1)$.

Skew Young Diagrams and Skew Tableaux

- Given two partitions λ and μ, with μ inside λ, the skew Young diagram λ / μ consists of the boxes inside the Young diagram of λ but outside the Young diagram of μ.
- Example:
- $\lambda=(5,3,2)$
- $\mu=(2,1)$
- $\lambda / \mu=(5,3,2) /(2,1)$
- Young diagram of λ / μ :

Skew Young Diagrams and Skew Tableaux

- Given two partitions λ and μ, with μ inside λ, the skew Young diagram λ / μ consists of the boxes inside the Young diagram of λ but outside the Young diagram of μ.
- Example:
- $\lambda=(5,3,2)$
- $\mu=(2,1)$
- $\lambda / \mu=(5,3,2) /(2,1)$
- Young diagram of λ / μ :

- A skew tableau is a skew Young diagram with its boxes filled according to the same rules as regular tableaux.
- Example:

Cylindric Tableaux

- A cylindric tableau is an "infinite" skew tableau where every row repeats if you go k rows down but move m steps to the left, for some fixed k and m.
- Corresponding entries are considered the same entry, because we can think of them as corresponding to the same place on a cylinder.

Cylindric Tableaux

- A cylindric tableau is an "infinite" skew tableau where every row repeats if you go k rows down but move m steps to the left, for some fixed k and m.
- Corresponding entries are considered the same entry, because we can think of them as corresponding to the same place on a cylinder.

Cylindric Partitions

- A cylindric partition is a "periodic", weakly decreasing sequence of integers.
- It can be represented as a Young diagram that extends infinitely far left.
- A cylindric tableau is bounded by two cylindric partitions.
- Corresponding boxes in a partition are actually the same box.

Schur Polynomials

- Let T be a tableau with entries from $\{1,2, \ldots, n\}$.
- If T has $\mu_{k} k$'s for $1 \leq k \leq n$, then the content of T is the tuple $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$.

Schur Polynomials

- Let T be a tableau with entries from $\{1,2, \ldots, n\}$.
- If T has $\mu_{k} k$'s for $1 \leq k \leq n$, then the content of T is the tuple $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$.
- The Schur polynomial of a partition λ in n variables, denoted $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is obtained by:
- taking, for each tableau T of shape λ, the monomial $x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \ldots x_{n}^{\mu_{n}}$, where $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ is the content of T,
- adding these monomials together.
- Example:
- $\lambda=(2,1)$
- $n=3$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 2 & 1 & 3 & 1 & 1 & 1 & 2 & 1 & 3 & 2 & 2 & 2 & 3 \\
\hline 2 & & 2 & & \begin{array}{ll}
2 & \\
\hline & \\
\hline 3 & \\
\hline
\end{array} \\
\hline
\end{array}
$$

- $s_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$

Schur Polynomials

- Let T be a tableau with entries from $\{1,2, \ldots, n\}$.
- If T has $\mu_{k} k$'s for $1 \leq k \leq n$, then the content of T is the tuple $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$.
- The Schur polynomial of a partition λ in n variables, denoted $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is obtained by:
- taking, for each tableau T of shape λ, the monomial $x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \ldots x_{n}^{\mu_{n}}$, where $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ is the content of T,
- adding these monomials together.
- Example:
- $\lambda=(2,1)$
- $n=3$
- $s_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$
- Notice: s_{λ} is symmetric!

Theorem

For regular, skew, and cylindric tableaux, Schur polynomials are

Proof of Schur Polynomial Symmetry (1)

- This is the same as proving that the number of tableaux of a given shape and content doesn't change when you permute the content.

Proof of Schur Polynomial Symmetry (1)

- This is the same as proving that the number of tableaux of a given shape and content doesn't change when you permute the content.
- It suffices to show that the number of tableaux with content $\left(k_{1}, k_{2}, \ldots, k_{i}, k_{i+1}, \ldots, k_{n}\right)$ is the same as the number of tableaux with content $\left(k_{1}, k_{2}, \ldots, k_{i+1}, k_{i}, \ldots, k_{n}\right)$ for any $1 \leq i<n$.

Proof of Schur Polynomial Symmetry (2)

- We will create a bijection (Bender-Knuth involution). Here's an example:
- Let $i=2$ and T be the following tableau:

1	1	1	1	1	1	1	1	2	3	3
1	2	2	2	2	2	2	3	5	6	
3	3	3	4	5	5	5				

- Leave the white and blue boxes alone.
- Reverse the number of green and red boxes in each row:

1	1	1	1	1	1	1	1	2	2	3
1	2	2	2	3	3	3	3	5	6	
2		3	4	5	5	5				

Proof of Schur Polynomial Symmetry (2)

- We will create a bijection (Bender-Knuth involution). Here's an example:
- Let $i=2$ and T be the following tableau:

1	1	1	1	1	1	1	1	2	2	3	3
1	2	2	2	2	2	2	3	3	5	6	
3		3	4	5	5	5					

- Leave the white and blue boxes alone.
- Reverse the number of green and red boxes in each row:

1	1	1	1	1	1	1	1	2	2	3
1	2	2	2	3	3	3	3	5	6	
2	3	3	4	5	5	5				

- This is a bijection, since re-applying the transformation gives back T.

Proof of Schur Polynomial Symmetry (2)

- We will create a bijection (Bender-Knuth involution). Here's an example:
- Let $i=2$ and T be the following tableau:

1	1	1	1	1	1	1	1	2	2	3	3
1	2	2	2	2	2	2	3	3	5	6	
3		3	4	5	5	5					

- Leave the white and blue boxes alone.
- Reverse the number of green and red boxes in each row:

1	1	1	1	1	1	1	1	2	2	2	3
1	2	2	2	3	3	3	3	3	5	6	
2	3	3	4	5	5	5					

- This is a bijection, since re-applying the transformation gives back T.
- This proof also works for skew and cylindric tableaux.

Horizontal and Vertical Strips: Definition

- A horizontal i-strip is a set of i boxes, none of which are in the same column. (Example:

- A vertical i-strip is a set of i boxes, none of which are in the same row. (Example:

Horizontal and Vertical Strips: Definition

- A horizontal i-strip is a set of i boxes, none of which are in the same column. (Example:

- A vertical i-strip is a set of i boxes, none of which are in the same row. (Example:

- $h_{i}(\lambda)$ is the formal sum of all partitions you can get after attaching a horizontal i-strip to λ.
- $e_{i}(\lambda)$ is the formal sum of all partitions you can get after attaching a vertical i-strip to λ.
- $h_{i}^{*}(\lambda)$ is the formal sum of all partitions you can get after removing a horizontal i-strip from λ.
- $e_{i}^{*}(\lambda)$ is the formal sum of all partitions you can get after removing a vertical i-strip from λ.

Horizontal and Vertical Strips: Example

e $\lambda=(3,1)$

- $h_{2}(\lambda)=\square \square \square \square$
\square
\square
\square

Horizontal and Vertical Strips: Example

- $\lambda=(3,1)$

Horizontal and Vertical Strips: Example

- $\lambda=(3,1)$

- $h_{2}^{*}(\lambda)=\square+\square$

Horizontal and Vertical Strips: Example

- $\lambda=(3,1)$

- $h_{2}^{*}(\lambda)=\square+\square$
- $e_{2}^{*}(\lambda)=\square$

Horizontal and Vertical Strips: Example

- $\lambda=(3,1)$

- $h_{2}^{*}(\lambda)=\square+\square$
- $e_{2}^{*}(\lambda)=\square$

Theorem

h and e commute with each other and with themselves.

- $h_{j}\left(h_{i}(\lambda)\right)=h_{i}\left(h_{j}(\lambda)\right)$
- $e_{j}\left(e_{i}(\lambda)\right)=e_{i}\left(e_{j}(\lambda)\right)$
- $h_{j}\left(e_{i}(\lambda)\right)=e_{i}\left(h_{j}(\lambda)\right)$

Similarly, h^{*} and e^{*} commute with each other and with themselves.

Proof that h Commutes with Itself (1)

- Consider $h_{j}\left(h_{i}(\lambda)\right)$ for any j, i, and λ.
- Let μ be λ with the horizontal i-strip added.
- Let ν be μ with the horizontal j-strip added.
- Consider the Young diagram of ν / λ.
- Fill the boxes of μ / λ with 1 's.
- Fill the boxes of ν / μ with 2's.
- Example:
- $\lambda=(5,4,4,1)$
- $i=5$
- $j=6$
- One summand of $h_{j}\left(h_{i}(\lambda)\right)$:

Proof that h Commutes with Itself (2)

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_{j}\left(h_{i}(\lambda)\right)$ is the number of skew tableaux of shape ν / λ with i 1's and j 2's.

Proof that h Commutes with Itself (2)

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_{j}\left(h_{i}(\lambda)\right)$ is the number of skew tableaux of shape ν / λ with i 1's and $j 2$'s.
- Since Schur polynomials are symmetric, this is the same as the number of skew tableaux of shape ν / λ with j 1's and $i 2$'s.

Proof that h Commutes with Itself (2)

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_{j}\left(h_{i}(\lambda)\right)$ is the number of skew tableaux of shape ν / λ with i 1's and $j 2$'s.
- Since Schur polynomials are symmetric, this is the same as the number of skew tableaux of shape ν / λ with j 1's and $i 2$'s.
- Therefore, $h_{j}\left(h_{i}(\lambda)\right)=h_{i}\left(h_{j}(\lambda)\right)$.

Proof that h Commutes with Itself (2)

- Since we can do this for every pair of horizontal strips that is added, the number of times ν is in $h_{j}\left(h_{i}(\lambda)\right)$ is the number of skew tableaux of shape ν / λ with i 1's and $j 2$'s.
- Since Schur polynomials are symmetric, this is the same as the number of skew tableaux of shape ν / λ with j 1's and $i 2$'s.
- Therefore, $h_{j}\left(h_{i}(\lambda)\right)=h_{i}\left(h_{j}(\lambda)\right)$.
- This proof also works for cylindric partitions.

Commutativity of h and e with h^{*} and e^{*}

- For regular partitions, neither h nor e commute with either h^{*} or e^{*}.

Commutativity of h and e with h^{*} and e^{*}

- For regular partitions, neither h nor e commute with either h^{*} or e^{*}.
- Example:
- $h_{1}\left(h_{1}^{*}(\square \square)\right)=h_{1}(\square)=\square \square+\square$
- $h_{1}^{*}\left(h_{1}(\square)\right)=h_{1}^{*}(\square \square \square+\square \square)=\square+\square \square+\square$

Commutativity of h and e with h^{*} and e^{*}

- For regular partitions, neither h nor e commute with either h^{*} or e^{*}.
- Example:
- $h_{1}\left(h_{1}^{*}(\square \square)\right)=h_{1}(\square)=\square \square+\square$
- $h_{1}^{*}\left(h_{1}(\square)\right)=h_{1}^{*}(\square \square \square+\square \square)=\square \square+\square \square+\square$

Theorem

For cylindric partitions, h and e commute with h^{*} and e^{*}.

Commutativity of h and e with h^{*} and e^{*}

- For regular partitions, neither h nor e commute with either h^{*} or e^{*}.
- Example:
- $h_{1}\left(h_{1}^{*}(\square \square)\right)=h_{1}(\square)=\square \square+\square$
- $h_{1}^{*}\left(h_{1}(\square)\right)=h_{1}^{*}(\square \square \square+\square \square)=\square \square+\square \square+\square$

Theorem

For cylindric partitions, h and e commute with h^{*} and e^{*}.

- The fact that there are nice properties of cylindric tableaux that don't exist for regular tableaux is encouraging.

Goals

- Goal 1: extend notions applicable to regular tableaux to cylindric tableaux.
- Cylindric tableau product (different equivalent methods for regular tableau products yield different results for cylindric tableaux)
- Robinson-Schensted-Knuth Correspondence (bijection between matrices and pairs of tableaux)
- Various combinatorial identities

Goals

- Goal 1: extend notions applicable to regular tableaux to cylindric tableaux.
- Cylindric tableau product (different equivalent methods for regular tableau products yield different results for cylindric tableaux)
- Robinson-Schensted-Knuth Correspondence (bijection between matrices and pairs of tableaux)
- Various combinatorial identities
- Goal 2: find useful notions applicable to cylindric tableaux but not to regular tableaux.
- Commutativity of h, e, h^{*}, and e^{*}

Goals

- Goal 1: extend notions applicable to regular tableaux to cylindric tableaux.
- Cylindric tableau product (different equivalent methods for regular tableau products yield different results for cylindric tableaux)
- Robinson-Schensted-Knuth Correspondence (bijection between matrices and pairs of tableaux)
- Various combinatorial identities
- Goal 2: find useful notions applicable to cylindric tableaux but not to regular tableaux.
- Commutativity of h, e, h^{*}, and e^{*}
- Goal 3: find applications of cylindric tableaux to other parts of math.
- Regular tableaux have a variety of applications in combinatorics and abstract algebra.
- Very few, if any, applications are known for cylindric tableaux.

Acknowledgements

- Darij Grinberg (my mentor), for introducing me to various topics in tableau theory and answering all of my questions.
- Pavel Etingof, Slava Gerovitch, and Tanya Khovanova, for organizing PRIMES.
- Alexander Postnikov, for helping to come up with the project.

