Generalizations of the Joints Problem Fourth Annual MIT PRIMES Conference

Joseph Zurier
Mentor: Ben Yang
Problem by: Larry Guth

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determinins the

May 17, 2014

Joints

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Joints

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the

Constant
A Conjecture
The General
Problem
Another
Generalization

The Joints Problem

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background
Determining the

The Joints Problem

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background
Determining the

The Joints Problem

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background
Determining the

The Joints Problem

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background
Determining the

Recent Work

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

Recent Work

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background
Determining the

Recent Work

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

Recent Work

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

What about c ?

Joints Problem, generalized

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background
Determining the

Constant

A Conjecture
What happens if we change the parameters of the problem?
Can we bound these cases as well?

The General
Problem
Another
Generalization

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the Constant

A Conjecture
Consider a $k \times k \times k$ grid.

The General

Problem

Another
Generalization

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the
Constant
A Conjecture
The General
Problem
Another
Generalization
Further Research

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier
Mentor：Ben
Yang
Problem by：
Larry Guth

Background

Determining the
Constant
A Conjecture

The General

Problem

Another

Generalization
Further Research
Acknowledgements

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier Mentor: Ben Yang
Problem by: Larry Guth

Background

Determining the Constant
A Conjecture

The General

Problem

Another

Generalization
$3 k^{2}$ lines make k^{3} joints, so $J=\left(\frac{1}{3}\right)^{\frac{3}{2}} n^{\frac{3}{2}}$

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the Constant

A Conjecture

Consider k planes in general position.

The General

Problem

Another
Generalization

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the
Constant
A Conjecture
The General

Problem

Another
Generalization
Further Research

Lower Bounds

Generalizations of the Joints Problem

Joseph Zurier Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the Constant

A Conjecture
The General

Problem

Another

Generalization
Further Research
$\binom{k}{2}$ lines make $\binom{k}{3}$ joints, so $J=\frac{\sqrt{2}}{3} n^{\frac{3}{2}}$

The Constant

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the Constant

A Conjecture
The General
Problem
Another
Generalization

The Constant

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the Constant

A Conjecture
The General
Problem
Another
Generalization
Further Research

The Constant

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the Constant

A Conjecture

The General

Problem

Another

Generalization
Further Research

Line Removal Conjecture

The polynomial method proof includes a step where each line is removed as part of an inductive argument.

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

Constant

A Conjecture
The General
Problem
Another
Generalization

Line Removal Conjecture

The polynomial method proof includes a step where each line is removed as part of an inductive argument. The following suffices to determine the constant:

Line Removal Conjecture

The polynomial method proof includes a step where each line is removed as part of an inductive argument. The following suffices to determine the constant:

Conjecture

Suppose we have a set S of n lines $\left\{\ell_{i}\right\}$ in \mathbb{R}^{3}. Given any such set S, let $f(S)$ be the number of joints formed by lines in S. Also, let $g\left(\ell_{0}, S\right)$ be the number of joints formed by ℓ_{0} and two members of S. Then there exists a sequence $\left\{a_{i}, i \leq k\right\}$ with the following properties:

1. $k \leq \frac{n}{2}$
2. $\forall 0 \leq x \leq k-1 g\left(\ell_{a_{x+1}}, S \backslash\left\{\ell_{a_{i}}, i \leq x\right\}\right) \leq$
$\left(6 f\left(S \backslash\left\{\ell_{a_{i}}, i \leq x\right\}\right)\right)^{\frac{1}{3}}$
Generalizations of the Joints Problem

Line Removal Conjecture

The polynomial method proof includes a step where each line is removed as part of an inductive argument. The following suffices to determine the constant:

Conjecture

Suppose we have a set S of n lines $\left\{\ell_{i}\right\}$ in \mathbb{R}^{3}. Given any such set S, let $f(S)$ be the number of joints formed by lines in S. Also, let $g\left(\ell_{0}, S\right)$ be the number of joints formed by ℓ_{0} and two members of S. Then there exists a sequence $\left\{a_{i}, i \leq k\right\}$ with the following properties:

$$
\text { 1. } k \leq \frac{n}{2}
$$

$$
\text { 2. } \forall 0 \leq x \leq k-1 g\left(\ell_{a_{x}+1}, S \backslash\left\{\ell_{a_{i}}, i \leq x\right\}\right) \leq
$$

$$
\left(6 f\left(S \backslash\left\{\ell_{a_{i}}, i \leq x\right\}\right)\right)^{\frac{1}{3}}
$$

Generalized to \mathbb{R}^{m}, the numbers work out if we use $\frac{1}{m-1}$ instead of $\frac{1}{2}$

Line Removal Conjecture

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the

Constant

A Conjecture
The General
Problem
Another
Generalization
Further Research

Line Removal Conjecture

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the

Constant

A Conjecture
The General
Problem
Another
Generalization
Further Research

Line Removal Conjecture

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the

Constant

A Conjecture
The General
Problem
Another
Generalization
Further Research

Line Removal Conjecture

Generalizations of the Joints Problem

Joseph Zurier
Mentor：Ben
Yang
Problem by：
Larry Guth

Background

Determining the

Constant

A Conjecture
The General
Problem
Another
Generalization

Line Removal Conjecture

Generalizations of the Joints Problem

Joseph Zurier Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining ate

Constant

A Conjecture
The General
Problem
Another
Generalization
Further Research

Line Removal Conjecture

 the Joints ProblemJoseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining ate

Constant

A Conjecture
The General
Problem
Another
Generalization

Line Removal Conjecture

Generalizations of the Joints Problem
 Joseph Zurier
 Mentor: Ben Yang
 Problem by:
 Larry Guth
 Background
 Determining the
 Constant
 A Conjecture

The General
Problem
Another
Generalization

The General Problem

Generalizations of the Joints Problem

Joseph Zurier

Mentor: Ben Yang
Problem by:
Larry Guth

The parameters are:

- The dimension of the space \mathbb{R}^{n}
- The dimension of the objects P_{a} that are intersecting
- The dimension of their intersection P_{b}
- The number k of P_{a} that must intersect to make a joint

The General Problem

Generalizations of the Joints Problem

Joseph Zurier

Mentor: Ben Yang
Problem by:
Larry Guth

The parameters are:

- The dimension of the space \mathbb{R}^{n}
- The dimension of the objects P_{a} that are intersecting
- The dimension of their intersection P_{b}
- The number k of P_{a} that must intersect to make a joint

Need $n=b+k(a-b)$

Lower Bound

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Detemining the

Constant

A Conjecture

$$
\frac{(k-1)!^{\frac{1}{k-1}}}{k} x^{\frac{k}{k-1}}
$$

The General
Problem
Another
Generalization
Further Research
Acknowledgements

Joints Redefined

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben
Yang
Problem by:
Larry Guth

Background

Determining the

Joints Redefined

Generalizations of the Joints Problem

Joseph Zurier

Mentor: Ben Yang
Problem by:
Larry Guth

Suppose we have a collection of p planes and ℓ lines in \mathbb{R}^{4}. Whenever two lines and one plane intersect at a common point such that their tangent vectors span \mathbb{R}^{4}, we call this point a joint.

Background

Determining the

Joints Redefined

Generalizations of the Joints Problem

Joseph Zurier

Mentor: Ben Yang
Problem by:
Larry Guth

Suppose we have a collection of p planes and ℓ lines in \mathbb{R}^{4}. Whenever two lines and one plane intersect at a common point such that their tangent vectors span \mathbb{R}^{4}, we call this point a joint.
Letting $p+\ell=n$, let's bound the number of joints as a function of n.

Upper Bound

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

Upper Bound

Joints can be made in two ways:

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the
Constant
A Conjecture
The General
Problem
Another
Generalization
Further Research

Upper Bound

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by: Larry Guth

Background

Determining the
Constant
A Conjecture
The General
Problem
Another
Generalization
Further Research

Upper Bound

Joints can be made in two ways:

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the
Constant
A Conjecture
The General
Problem
Another
Generalization
Further Research

Upper Bound

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the
Constant
A Conjecture
Theorem
The number of joints is $\leq k n^{\frac{3}{2}}$.

The General

Problem

Another
Generalization
Further Research

Significance

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

Constant

A Conjecture

The General

Problem

Another
Generalization

Significance

Joseph Zurier

Mentor: Ben Yang
Problem by:
Larry Guth

Lemma

Given a set of S lines in \mathbb{R}^{3}, there exists a set $K \subset S$ with $|K| \leq \frac{1}{3}|S|$ such that given any three lines in S intersecting in a joint, exactly one is in K.
We can use this lemma to give a new proof of the joints theorem $J \leq k n^{\frac{3}{2}}$.

Further Directions

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the

Further Directions

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

This problem is far from resolved, and there are a few distinct ways to proceed.

- Conjecture in \mathbb{R}^{3}

Background

Determining the

Further Directions

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

This problem is far from resolved, and there are a few distinct ways to proceed.

- Conjecture in \mathbb{R}^{3}
- Generalization with homogeneous dimension of intersecting objects

Background

Determining the

Further Directions

This problem is far from resolved, and there are a few distinct ways to proceed.

- Conjecture in \mathbb{R}^{3}
- Generalization with homogeneous dimension of intersecting objects
- Generalization of the idea in \mathbb{R}^{4}, with objects of different dimensions determining joints

Acknowledgements

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Determining the
Constant
A Conjecture
The General
Problem
Another
Generalization
Further Research
Acknowledgements

Acknowledgements

Generalizations of the Joints Problem

Joseph Zurier
Mentor: Ben Yang
Problem by:
Larry Guth

Background

Thanks to Ben Yang for helping me throughout the research Thanks to Dr. Larry Guth for suggesting this problem

Determining the
Constant
A Conjecture

The General

Problem
Another
Generalization
Further Research
Acknowledgements

Acknowledgements

Generalizations of the Joints Problem

Joseph Zurier

Mentor: Ben Yang
Problem by:
Larry Guth

Thanks to Ben Yang for helping me throughout the research Thanks to Dr. Larry Guth for suggesting this problem This project could not have been possible without the PRIMES program itself - a big thank you to Dr. Gerovitch and Dr. Khovanova

Background

Determining the
Constant
A Conjecture
The General

Problem

Another
Generalization

Acknowledgements

Thanks to Ben Yang for helping me throughout the research Thanks to Dr. Larry Guth for suggesting this problem This project could not have been possible without the PRIMES program itself - a big thank you to Dr. Gerovitch and Dr. Khovanova Thank you for listening!

