On the Winning Strategies in Generalizations of Nim

Joshua Xiong

Mentor: Tanya Khovanova

Fourth Annual PRIMES Conference

May 18, 2014

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

Player 1

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

Player 1

Player 2

(0,1,0)

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

(0,0,0)

Player 2 wins

P-Positions

- The starting position (2, 3, 1) is one where the person to play will always lose assuming optimal play
- We call such positions P-positions (losing positions)
- All other positions are called N-positions (winning positions)
 - Moves from P-positions can only go to N-positions
 - At least one move from every N-position goes to a P-position
 - The zero position (0,...,0) is a P-position

Winning strategy is to move to a P-position

Winning Strategy for Nim

Theorem (Bouton's Theorem)

In Nim, $P = (a_1, \ldots, a_n) \in \mathcal{P}$ if and only if $\bigoplus_{i=1}^n a_i = 0$.

■ The operator ⊕ is the bitwise XOR operator, (nim-sum) – represent each of the numbers in binary and add them column-wise modulo 2.

 Take same number of cookies from two piles or any number from one pile

Player 1

 Take same number of cookies from two piles or any number from one pile

Player 1

 Take same number of cookies from two piles or any number from one pile

Player 1

Take same number of cookies from two piles or any number from one pile

Player 1

Player 2

(0,0)

Take same number of cookies from two piles or any number from one pile

Player 1

Player 2

(0,0) Player 1 wins

Winning Strategy for Wythoff

Theorem (Wythoff's Theorem)

In Wythoff's game,
$$P = (a_1, a_2) \in \mathcal{P}$$
 if and only if $\{a_1, a_2\} = \{\lfloor n\phi \rfloor, \lfloor n\phi^2 \rfloor\}$ for some integer n , where $\phi = \frac{1+\sqrt{5}}{2}$.

Rectangular Games

- Move consists of taking same number of cookies from specified subsets of piles
 - Based on Cookie Monster game
- Adjoins rules onto the Nim rule (taking at least one cookie from exactly one of the piles)
- We are interested in the properties of the P-positions

- We specify which subsets of piles are legal to take from:
- Examples of games with three piles
 - One or n game
 One or Two game
 Consecutive game
 Cookie Monster game

- We specify which subsets of piles are legal to take from:
- Examples of games with three piles
 - One or n game
 One or Two game
 Consecutive game
 Cookie Monster game

• We specify which subsets of piles are legal to take from:

- Examples of games with three piles
 - One or n game
 One or Two game
 Consecutive game
 Cookie Monster gam

• We specify which subsets of piles are legal to take from:

- Examples of games with three piles
 - One or n game
 One or Two game
 Consecutive game
 Cookie Monster gam

• We specify which subsets of piles are legal to take from:

Examples of games with three piles

• We specify which subsets of piles are legal to take from:

Examples of games with three piles

• We specify which subsets of piles are legal to take from:

- Examples of games with three piles
 - One or *n* game
 One or Two game
 Consecutive game
 Cookie Monster game

• We specify which subsets of piles are legal to take from:

- Examples of games with three piles
 - One or *n* game
 One or Two game
 Consecutive game
 Cookie Monster game

Odd Game P-positions

Theorem

If we are only allowed to take from an odd number of piles, the *P*-positions are the same as the ones in Nim.

Main idea of proof:

- Show that the nim-sum of the position has to change when we use the new moves
- Use the strategy in Nim to get back to a position with zero nim-sum
- Since $(0, \ldots, 0) \in \mathcal{P}$, P-positions will be the same

Degrees of Freedom of P-positions

Theorem

For a position with n-1 numbers known, and one number unknown: $P = (a_1, \ldots, a_{n-1}, x)$, there is a unique value of x such that $P \in \mathcal{P}$.

In general, does there exist a function f(a₁,...a_{n-1}) = x?
 For Nim, this function is f_{NIM}(a₁,...a_{n-1}) = ⊕_{i=1}ⁿ⁻¹ a_i.

Bounds on P-Positions

General bound that holds for all rectangular games

Theorem If $P = (a_1, \dots, a_n) \in \mathcal{P}$ then $2(\sum_{i=1}^n a_i - a_j) \ge a_j$.

If no move allows us to take from exactly two of the piles

Theorem

If
$$P = (a_1, \ldots, a_n) \in \mathcal{P}$$
 then $\sum_{i=1}^n a_i - a_j \ge a_j$.

Both proved by strong induction on $\sum_{i=1}^{n} a_i - a_j$

Enumeration of P-positions

- This helps to get a sense of the structure and distribution of the P-positions
- We can enumerate based on total sum
- We calculate this sequence for Nim:
 - Three piles, total sum n: $3^{wt(n)}$ if n is even, 0 otherwise, where wt(n) is the number of ones in the binary representation of n.
 - **1**, 0, 1, 0, 3, 0, 3, 0, 9, 0, 3, 0, 9, 0, 9, 0, 27, 0, ...
- We also calculate for all other games (we show Cookie Monster game with three piles)
 - Three piles, total sum n: 1, 0, 0, 6, 0, 0, 3, 3, 6, 0, 3, 9, 6, 6, 0, 0, 15, 3, ...

Future Research

- Find an explicit formula for P-positions in our games
- Is there a metric that describes how closely the game behaves to Nim and Wythoff?
- Connection between consecutive game and Lie Algebras
- What happens in the misère version?

Acknowledgments

I would like to thank ...

- My mentor, Dr. Tanya Khovanova, for suggesting this project and for her invaluable words of wisdom
- Mr. Wuttisak Trongsiriwat and Mr. Rik Sengupta, for helpful tips and advice on the direction of this project
- The MIT PRIMES program, for providing me with the opportunity to conduct this research
- My parents, for providing transportation as well as continuous support

References

- M. H. Albert, R. J. Nowakowski, D. Wolfe, *Lessons in Play*, A K Peters, Wellesley, MA, 2007
- [2] E. R. Berlekamp, J. H. Conway and R. K. Guy, *Winning Ways for your Mathematical Plays*, vol. 1, second edition, A. K. Peters, Natick, MA, 2001.
- C. L. Bouton. *The Annals of Mathematics*, 2nd Ser., Vol. 3, No. 1/4. (1901 - 1902), pp. 35–39.