On the Winning Strategies in Generalizations of Nim

Joshua Xiong
Mentor: Tanya Khovanova
Fourth Annual PRIMES Conference

May 18, 2014

An example: Nim

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

Player 1

$(2,3,1)$

An example: Nim

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

Player 2

$(2,2,1)$

An example: Nim

■ Take at least one cookie from any one pile

- The player who takes the last cookie wins

Player 1

$(2,2,0)$

An example: Nim

■ Take at least one cookie from any one pile

- The player who takes the last cookie wins

Player 2

$(1,2,0)$

An example: Nim

- Take at least one cookie from any one pile
- The player who takes the last cookie wins

Player 1

An example: Nim

■ Take at least one cookie from any one pile

- The player who takes the last cookie wins

Player 2
$(0,1,0)$

An example: Nim

■ Take at least one cookie from any one pile

- The player who takes the last cookie wins

$$
(0,0,0)
$$

- Player 2 wins

P-Positions

- The starting position $(2,3,1)$ is one where the person to play will always lose assuming optimal play
- We call such positions P-positions (losing positions)
- All other positions are called N-positions (winning positions)
- Moves from P-positions can only go to N-positions
- At least one move from every N -position goes to a P-position
- The zero position $(0, \ldots, 0)$ is a P-position

■ Winning strategy is to move to a P -position

Winning Strategy for Nim

> Theorem (Bouton's Theorem)
> In $\operatorname{Nim}, P=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{P}$ if and only if $\bigoplus_{i=1}^{n} a_{i}=0$.

- The operator \oplus is the bitwise XOR operator, (nim-sum) represent each of the numbers in binary and add them column-wise modulo 2.

Another example: Wythoff's Game

- Take same number of cookies from two piles or any number from one pile

Player 1

Another example: Wythoff's Game

- Take same number of cookies from two piles or any number from one pile

$(2,1)$

Another example: Wythoff's Game

- Take same number of cookies from two piles or any number from one pile

Player 1
$(1,1)$

Another example: Wythoff's Game

- Take same number of cookies from two piles or any number from one pile

Player 2
$(0,0)$

Another example: Wythoff's Game

- Take same number of cookies from two piles or any number from one pile

Player 1

$(0,0)$

- Player 1 wins

Winning Strategy for Wythoff

Theorem (Wythoff's Theorem)
In Wythoff's game, $P=\left(a_{1}, a_{2}\right) \in \mathcal{P}$ if and only if $\left\{a_{1}, a_{2}\right\}=\left\{\lfloor n \phi\rfloor,\left\lfloor n \phi^{2}\right\rfloor\right\}$ for some integer n, where $\phi=\frac{1+\sqrt{5}}{2}$.

Rectangular Games

■ Move consists of taking same number of cookies from specified subsets of piles

- Based on Cookie Monster game
- Adjoins rules onto the Nim rule (taking at least one cookie from exactly one of the piles)
■ We are interested in the properties of the P -positions

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:

- Examples of games with three piles

1 One or n game
2 One or Two game
[3] Consecutive game
4 Cookie Monster game

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:
■ Examples of games with three piles
1 One or n game
2 One or Two game
3 Consecutive game
4 Cookie Monster game

$(0,1,2)$

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:

- Examples of games with three piles

1 One or n game
2 One or Two game
3 Consecutive game
4 Cookie Monster game

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:
■ Examples of games with three piles

2 One or Two game
3 Consecutive game
4 Cookie Monster game

$(0,2,2)$

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:

- Examples of games with three piles

1 One or n game
2 One or Two game
3 Consecutive game
4 Cookie Monster game

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:
■ Examples of games with three piles
1 One or n game
2 One or Two game
3 Consecutive game
4 Cookie Monster game

$(1,0,1)$

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:

- Examples of games with three piles

1 One or n game
2 One or Two game
3 Consecutive game
4 Cookie Monster game

$(1,2,3)$

Proposed Generalizations

■ We specify which subsets of piles are legal to take from:
■ Examples of games with three piles
1 One or n game
2 One or Two game
3 Consecutive game
4 Cookie Monster game

$(0,1,3)$

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Methods / Programs

■ We implement an efficient recursive algorithm for computing P-positions in Java

Odd Game P-positions

Theorem

If we are only allowed to take from an odd number of piles, the P-positions are the same as the ones in Nim.

Main idea of proof:

- Show that the nim-sum of the position has to change when we use the new moves
- Use the strategy in Nim to get back to a position with zero nim-sum

■ Since $(0, \ldots, 0) \in \mathcal{P}$, P -positions will be the same

Degrees of Freedom of P-positions

Theorem

For a position with $n-1$ numbers known, and one number unknown: $P=\left(a_{1}, \ldots, a_{n-1}, x\right)$, there is a unique value of x such that $P \in \mathcal{P}$.

- In general, does there exist a function $f\left(a_{1}, \ldots a_{n-1}\right)=x$?
- For Nim, this function is $f_{\text {NIM }}\left(a_{1}, \ldots a_{n-1}\right)=\bigoplus_{i=1}^{n-1} a_{i}$.

Bounds on P-Positions

- General bound that holds for all rectangular games

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } P=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{P} \text { then } 2\left(\sum_{i=1}^{n} a_{i}-a_{j}\right) \geq a_{j} .
\end{aligned}
$$

■ If no move allows us to take from exactly two of the piles

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } P=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{P} \text { then } \sum_{i=1}^{n} a_{i}-a_{j} \geq a_{j} \text {. }
\end{aligned}
$$

- Both proved by strong induction on $\sum_{i=1}^{n} a_{i}-a_{j}$

Enumeration of P-positions

■ This helps to get a sense of the structure and distribution of the P -positions

- We can enumerate based on total sum

■ We calculate this sequence for Nim:

- Three piles, total sum $n: 3^{\mathrm{wt}(n)}$ if n is even, 0 otherwise, where $\mathrm{wt}(n)$ is the number of ones in the binary representation of n.
- $1,0,1,0,3,0,3,0,9,0,3,0,9,0,9,0,27,0, \ldots$
- We also calculate for all other games (we show Cookie Monster game with three piles)
- Three piles, total sum $n: 1,0,0,6,0,0,3,3,6,0,3,9,6,6$, $0,0,15,3, \ldots$

Future Research

■ Find an explicit formula for P-positions in our games
■ Is there a metric that describes how closely the game behaves to Nim and Wythoff?
■ Connection between consecutive game and Lie Algebras
■ What happens in the misère version?

Acknowledgments

I would like to thank...
■ My mentor, Dr. Tanya Khovanova, for suggesting this project and for her invaluable words of wisdom

- Mr. Wuttisak Trongsiriwat and Mr. Rik Sengupta, for helpful tips and advice on the direction of this project
- The MIT PRIMES program, for providing me with the opportunity to conduct this research
- My parents, for providing transportation as well as continuous support

References

1 M. H. Albert, R. J. Nowakowski, D. Wolfe, Lessons in Play, A K Peters, Wellesley, MA, 2007
2 E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for your Mathematical Plays, vol. 1, second edition, A. K. Peters, Natick, MA, 2001.
3 C. L. Bouton. The Annals of Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901-1902), pp. 35-39.

