Removing Cycles from Dense Digraphs

Noah Golowich

Mentor: László Miklós Lovász

4th Annual MIT-PRIMES Conference

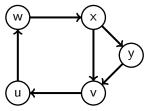
May 17, 2014

• • • • • • • • • • • • •

 $\exists \rightarrow$

Directed graphs

• Digraph: directed graph, no multiple edges

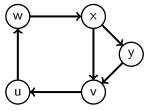


A ►

э

Directed graphs

• Digraph: directed graph, no multiple edges



• Cycles in digraphs:

Definition

A digraph is *r*-free if the length of its shortest directed cycle is > r.

• Above graph is 3-free but not 4-free (i.e. *uwxv*).

Problems in *r*-free digraphs

Conjecture (Caccetta & Häggkvist, 1978)

Every r-free digraph on n vertices has a vertex of outdegree less than $\frac{n}{r}$.

Problems in *r*-free digraphs

Conjecture (Caccetta & Häggkvist, 1978)

Every r-free digraph on n vertices has a vertex of outdegree less than $\frac{n}{r}$.

Parameters in r-free digraph G:

- β(G): minimum number of edges needed to remove to make the graph acyclic (*minimum feedback arc set*).
- $\gamma(G)$: number of non-adjacent pairs of vertices.

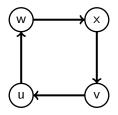
Problems in *r*-free digraphs

Conjecture (Caccetta & Häggkvist, 1978)

Every r-free digraph on n vertices has a vertex of outdegree less than $\frac{n}{r}$.

Parameters in r-free digraph G:

- β(G): minimum number of edges needed to remove to make the graph acyclic (*minimum feedback arc set*).
- $\gamma(G)$: number of non-adjacent pairs of vertices.
- Example: $\beta(C_4) = 1, \gamma(C_4) = 2$:



Bounds on $\beta(G)$

Conjecture (Sullivan, 2008)

If G is an r-free digraph, then $\beta(G) \leq \frac{2\gamma(G)}{(r-2)(r+1)}$.

Bounds on $\beta(G)$

Conjecture (Sullivan, 2008)

If G is an r-free digraph, then $\beta(G) \leq \frac{2\gamma(G)}{(r-2)(r+1)}$.

Known (Fox, Keevash, & Sudakov, 2008):

- $\beta(G) \le 800\gamma(G)/r^2$.
- $\beta(G) \leq 25n^2/r^2$.

Bounds on $\beta(G)$

Conjecture (Sullivan, 2008)

If G is an r-free digraph, then $\beta(G) \leq \frac{2\gamma(G)}{(r-2)(r+1)}$.

Known (Fox, Keevash, & Sudakov, 2008):

- $\beta(G) \le 800\gamma(G)/r^2$.
- $\beta(G) \le 25n^2/r^2$.

Improved bounds:

Theorem

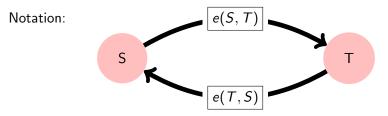
If G is an r-free digraph on n > 12 vertices, then

•
$$\beta(G) < \frac{229\gamma(G)}{(r-2)^2}$$
.

• $\beta(G) < 5.59 n^2/r^2$.

イロト イポト イヨト イヨト

Edge expansion

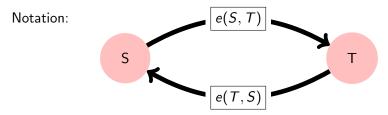


< 🗇 >

э

æ

Edge expansion



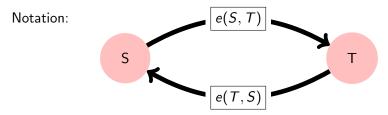
Definition

Edge expansion of a digraph G:

$$\mu(G) = \min_{\substack{S \subset V(G) \\ |S| \leq \frac{n}{2}}} \frac{\min\{e(S, V \setminus S), e(V \setminus S, S)\}}{|S|}$$

Noah Golowich Dense Digraphs

Edge expansion



Definition

Edge expansion of a digraph G:

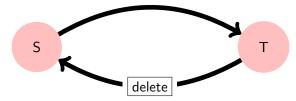
$$\mu(G) = \min_{\substack{S \subset V(G) \\ |S| \leq \frac{n}{2}}} \frac{\min\{e(S, V \setminus S), e(V \setminus S, S)\}}{|S|}$$

Modified edge expansion of a digraph G:

$$\lambda(G) = \min_{S \subset V(G)} \frac{\min\{e(S, V \setminus S), e(V \setminus S, S)\}}{|S| \cdot |V \setminus S|}.$$

Using results on edge expansion

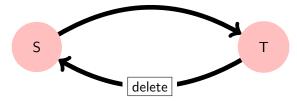
• Big idea: choose S with $\lambda(S)$ small, let $T = V \setminus S$:



A 10

Using results on edge expansion

• Big idea: choose S with $\lambda(S)$ small, let $T = V \setminus S$:

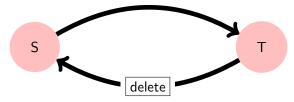


• Show that $\lambda(G) < 11.17/r^2 \Rightarrow \beta(G) < 5.59n^2/r^2$.

Image: A = A

Using results on edge expansion

• Big idea: choose S with $\lambda(S)$ small, let $T = V \setminus S$:



- Show that $\lambda(G) < 11.17/r^2 \Rightarrow \beta(G) < 5.59n^2/r^2$.
- Moreover, show that as $\gamma(G)$ decreases, $\lambda(G)$ decreases:
- If G is an r-free digraph, then β(G) < ^{229γ(G)}/_{(r-2)²}. (β(G) is the size of the smallest feedback arc set.)

Conjecture (Chudnovsky, Seymour & Sullivan, 2008) If G is a 3-free digraph, then $\beta(G) \leq \gamma(G)/2$.

Previous work for r = 3:

$\beta(G) \leq \gamma(G)$ for 3-free digraphs	Chudnovsky, Seymour
	& Sullivan (2006)
$\beta(G) \leq .88\gamma(G)$ for 3-free digraphs	Dunkum, Hamburger
	& Pór (2009)
$\beta(G) \leq \gamma(G)/2$ for specific 3-free	Chudnovsky, Seymour
digraphs	& Sullivan (2006)

 $\beta(G) \leq .88\gamma(G)$ used to improve bounds for Caccetta-Häggkvist conjecture.

Theorem

If G is a 3-free digraph, then $\lambda(G) \leq 1/3$.

- Idea: There is some subset of V(G) with the number of edges coming out less than 1/3 the total number of edges which could come out.
- Very weak version of Caccetta-Häggkvist conjecture: replace "vertex" with "subset of vertices".

Outline of proof

• Assume that $\lambda(G) > 1/3$ but G has a 3-cycle.

< /□ > < □ >

문 🛌 문

Outline of proof

- Assume that $\lambda(G) > 1/3$ but G has a 3-cycle.
- Solution Find lower bound on number of *induced 2-paths* centered at some *v*:

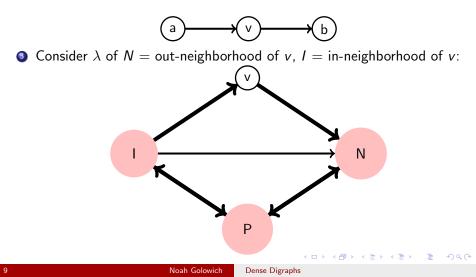
< □ > < □ >

ヨート

Outline of proof

• Assume that $\lambda(G) > 1/3$ but G has a 3-cycle.

Solution Find lower bound on number of *induced 2-paths* centered at some *v*:



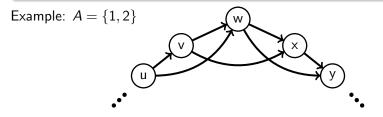
Cayley graphs

Definition

Given prime p, $A \subset \{1, \ldots, p-1\}$, form a *Cayley graph* on v_0, \ldots, v_{p-1} by drawing edge between v_i, v_j if $j - i \pmod{p} \in A$.

Definition

Restricted Cayley graph: $A \subset \{1, \ldots, \frac{p-1}{2}\}.$



Caccetta-Häggkvist Conjecture proved for all Cayley graphs (Hamidoune, 1981).

Cayley graphs

- β(G) ≤ γ(G)/2 open for all 3-free Cayley graphs on ℤ_p.
- Known: if G is a Cayley graph on Z_p, β(G) ≤ γ(G)/2 if
 |A| ≤ (p − 1)/4. (β(G) is size of minimum feedback arc set, γ(G) is
 number of non-adjacent pairs of vertices.)

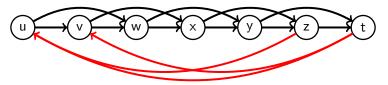
Cayley graphs

- β(G) ≤ γ(G)/2 open for all 3-free Cayley graphs on ℤ_p.
- Known: if G is a Cayley graph on Z_p, β(G) ≤ γ(G)/2 if
 |A| ≤ (p − 1)/4. (β(G) is size of minimum feedback arc set, γ(G) is
 number of non-adjacent pairs of vertices.)

Theorem

If p > 207 is prime, and G is a 3-free restricted Cayley graph on \mathbb{Z}_p , then $\beta(G) \leq .4\gamma(G)$.

- $\beta(G) \leq \gamma(G)/3$ seems to be tight.
- Outline of proof:



< ロ > < 同 > < 回 > < 回 > < □ > <

- Improve bounds further.
- Consider more general Cayley graphs.
- Relate γ(G), β(G) to other parameters: e.g. if α(G) = number of distinct 4-cycles, then √α(G) ≤ γ(G)/2.

3. 3

I would like to thank:

- László Miklós Lovász
- Professor Jacob Fox
- Dr. Tanya Khovanova
- MIT-PRIMES

A 10

э