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Abstract

In this paper we explore generalizations of the joints problem introduced by B. Chazelle

et al. A joint is formed when three noncoplanar lines intersect in R3, and other authors have

proved an O(n
3
2 ) bound on the number of joints formed by n lines. We narrow the constant

in this bound to between
√
2
3 and 4

3 , and explore the problem when the dimension of the space,

the dimension of the intersecting hyperplanes, and the dimension of their mutual intersection

is changed. We also consider cases where the intersecting hyperplanes do not all have the same

dimension, focusing on the simplest nontrivial case in R4. This case is used to reconsider the

original joints problem with an eye towards extending current results to higher dimensions.

We prove an analogue of the joints theorem for this case and use it to give a new proof of the

theorem in R3.
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1 Introduction

Recently, a new and powerful method of solving incidence geometry problems has been developed
by Guth and Katz. This method, known as the polynomial method, has enabled progress to be
made on many outstanding problems in the field, including the joints problem posed in 1992 by B
Chazelle et al. [8] The joints problem asks this: Given n lines in R3, how many joints can be made?
A joint is defined as an intersection of three lines such that their tangent vectors form a basis for
R3. Note that to exclude trivial cases we will only count k > 3 noncoplanar lines intersecting at a
common point as a single joint.

The joints problem is motivated by a number of related problems in computer science; at their
center is the hidden surface removal problem, which is the computer graphics problem of comput-
ing the view of a scene from some viewpoint. Given a set of objects with polygonal boundary, it is
easier to render them when there exists an ordering of the polygons by distance; that is, there are
no cycles, or chains of n polygons such that Pi covers Pi+1 and Pn covers P1. The joints problem,
in addition to its purely mathematical value, is related to the study of understanding algorithmic
and combinatorial properties of lines, rods, and cycles in R3 [8].

In [8], the authors conjectured an upper bound of O(n
3
2 ) joints given n lines. The following

result is recent, and the proof relies on ideas from the polynomial method:

Theorem 1. Any n lines in space determine at most 10n
3
2 joints.

This result is due to Guth [7], with the first proof that the bound is O(n
3
2 ) given by Guth and

Katz ([3]). This first paper introduced a number of groundbreaking algebraic techniques that are
at the center of further research on what is known as the Kayeka conjecture. A simpler proof
using similar techniques was then given by Elekes et al. ([4]). This proof is concerned only with
determining the exponent n

3
2 . In the original 1992 paper presenting the problem, the best bound

was O(n
7
4 ) [8]. One of the goals of this project is to investigate the constant factor of 10: can it

be lowered? In this paper, we prove a result that lowers this constant factor substantially, giving a
new upper bound of 4

3
n

3
2 joints that can be made with n lines.

The other goal of the project is to investigate generalizations of the joints problem — playing
with the dimensions of the intersecting objects, the dimension of the space, the dimension of
the intersection, and the number of the objects that must intersect to make a joint. This paper
establishes a lower bound for all variations of the joints problem where the objects that intersect to
make joints have a common dimension.

We will also look at a new way to approach the generalized joints problem by using a further
generalization — giving the intersecting objects differing dimensions. We prove an upper bound
on a new generalization of the problem to R4 where joints are made by the intersection of two lines
and a plane, and use it to give a new proof of the original joints theorem on incidence in R3.
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2 Methods and Techniques

One major result used in previous important work on the joints problem is the following funda-
mental theorem:

Theorem 2. Given k points in Rm, there exists a nonzero polynomial of degree d ≤ (m!k)
1
m that

vanishes on each of the points.

This theorem, presented with derivation by Guth ([6]) forms the basis of a new technique in
incidence geometry; the theorem itself follows by considering the vector space of polynomials
in m variables over R of degree ≤ d and applying linear algebra to the (linear) evaluation map
E(P ) = (E(x1), . . . , E(xk)).

We will also make use of some properties of reguli. A regulus is defined as a degree two
algebraic surface that is ruled by two families of lines L1 and L2 such that any pair of lines from
different families is coplanar and any pair from the same family is noncoplanar. It is easy to
observe that a regulus and a plane in R4 that intersect in more than two noncollinear points must
lie in a common three-dimensional subspace. In addition, a line cannot intersect a given regulus
more than twice without being contained in it. Finally (this follows almost by definition): if we
have two families of lines L1 and L2 in Rm such that each line in L1 intersects each line in L2,
then the lines lie on a common regulus (or plane, since planes are degenerate reguli). Reguli were
used extensively in the original O(n

7
4 ) bound given by Chazelle et al; for our purposes they will

help us examine a problem related to the joints problem concerning planes and lines in R4.

3 Joints in R3

We now turn to the first part of the project: investigating the joints theorem in three dimensions.
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As a warm-up, it is fruitful to consider the simpler case of joints in R2. Define a joint to be the
intersection of any two lines in the plane. It is clear that the asymptotically maximal construction
with n lines has O(n2) joints; in fact, we can compute it explicitly as

(
n
2

)
≈ n2

2
by taking n lines

in general position.
The problem in three dimensions is more difficult. A trivial upper bound of O(n2) can be

computed by bounding the number of intersections (since certainly the number of joints is at most
the number of intersections), but it is not obvious how to obtain a bound of O(n2−ε) for any ε > 0.
Since the problem was presented in 1992 along with the initial upper bound of O(n

7
4 ), the bound

has gradually lowered in [9] and [10] until the recent result of O(n
3
2 ) in [3]. It has been shown

(and we will reproduce this later) that there are constructions with n lines and ≥ kn
3
2 joints for

some fixed constant k.
This raises an interesting and currently open question: Let f(n) be the maximal number of

joints it is possible to create with n lines. What is limn→∞
f(n)

n
3
2

?
Since this question has never been seriously attacked, it is not surprising that the previous

bounds are not as tight as they could have been even using the techniques already in play. Our
work will be based off a later proof of the theorem by Guth which gives a bound of 10n

3
2 [7].

Guth’s own work in this proof implies an upper bound constant (we will omit the n
3
2 for brevity)

of 3
√
3, already significantly better than 10. It is possible to reduce this still further to

√
6 using

a slight optimization to Guth’s proof, replacing his approximation of (n!)
1
n ≈ n with the more

efficient (3!)
1
3 < 3.

However, getting below
√
6 requires a new approach, which we apply below. The key idea is

approximating an integer sequence by a differentiable function.
The proof relies on the following lemma:

Lemma 1. Given J joints made by L lines, there exists some line with ≤ (6J)
1
3 joints on it.

Proof. We proceed by contradiction. Suppose each line has more than (6J)
1
3 joints on it. We

consider the minimal nonzero polynomial that vanishes on all the joints. By the polynomial method
dimension-counting theorem, it has degree d ≤ (6J)

1
3 . We know that any polynomial of degree

≤ d that vanishes on more than d points on a line must be the zero polynomial, so the minimal
polynomial vanishes on each line as well. This means that each of its partial derivatives vanish on
every line. At each joint, therefore, the function has three directional derivatives that are each equal
to zero; by our spanning condition the directions are linearly independent. Hence the gradient of
the polynomial is equal to zero on all the joints. Thus any single partial derivative of the polynomial
must vanish at all the joints. But the polynomial was already minimal, and its partial derivatives
have a smaller degree, a contradiction.
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We now proceed to the theorem itself.

Theorem 1. n lines in R3 determine at most
(
4
3
+ ε
)
n

3
2 joints.

Proof. We follow the general approach outlined in [7], but modify it slightly to take advantage of
a new method of sharpening the constant factor:

Let L0 be a configuration of lines and joints with n lines and j0 = J joints. Let L0, L1, . . . , Ly

be a sequence of configurations of lines and joints. The i + 1th configuration is obtained by
removing a line with ≤ (6ji)

1
3 joints from the ith configuration, where ji is the number of joints in

the ith configuration; the existence of such a line is guaranteed by the lemma above. Furthermore
we will make sure that jy = 0 by letting y = n.

We can now sketch the argument given in [7], with some modifications for clarity:
Each of the quantities ji−ji+1 is less than (6ji)

1
3 ; in particular, since the sequence ji is decreas-

ing, they are each less than (6j0)
1
3 . The sum

∑y−1
i=0 ji − ji+1 is equal to j0 − 0, and it is bounded

above by y(6j0)
1
3 . Hence j0 ≤ y(6j0)

1
3 ; simplifying gives J ≤

√
6n

3
2 when we let y = n.

However, we can make this bound better. Notice that in an asymptotically maximal construc-
tion each ji − ji+1 will be close to (6ji)

1
3 .

Let us define g(x) as follows: g(0) = 0, and g(x+ 1)− g(x) = (6g(x+ 1))
1
3 .

Claim: g(i) is an asymptotic upper bound for jy−i. This is clear because g(0) = jy−0, and at
each “step” g(i+ 1)− g(i) ≥ jy−i − jy−(i+1) by the above. Thus j0 ≤ g(y).

We can further approximate (asymptotically as always) g by noting that g(x + 1) − g(x) ≈
g′(x + 1). This only makes “sense” if we interpolate g by a differentiable function; this second
function f is the solution to the differential equation f ′(x) = (6f(x))

1
3 with f(0) = 0, and g

approaches f asymptotically.
Solving the differential equation:

f ′(x) ≤ (6f(x))
1
3∫

1

(6f(x))
1
3

df(x) ≤
∫

dx

3(6−
1
3 )

2
f(x)

2
3 ≤ x

f(x) ≤
(
4

3
+ ε

)
x

3
2

where ε > 0 is arbitrarily small to account for our approximations, and plugging in x = y = n

gives us (
4

3
+ ε

)
n

3
2 ≥ f(y) ≈ g(y) ≥ J.
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As for a lower bound, it can be verified that an s× s× s grid of lines contains s3 joints and 3s2

lines, giving a simple construction with J =
(
n
3

) 3
2 joints when we solve for the number of joints

in terms of the number of lines [3]. Up to a constant factor, this implies that our O(n
3
2 ) bound was

tight.
The best-known lower bound of

√
2
3
n

3
2 is determined by considering k planes in general posi-

tion. Any two of them intersect in a line, and any three intersect in a joint. Setting n =
(
k
2

)
≈ k2

2

and solving for
(
k
3

)
≈ k3

6
in terms of n gives the desired result. The approximations used are

tight asymptotically. The example of planes in general position was introduced with the original
problem in [8]; the explicit lower bound (including constant) has been computed here for the first
time.

Notice that when n is not of the form
(
k
2

)
we need to modify the construction. Let

(
c
2

)
be the

greatest binomial coefficient less than n; then notice that because

lim
c→∞

(
c+1
3

)(
c
3

) = 1

holds, it is asymptotically tight (in terms of the lower bound) to use any construction containing a
conjecturally optimal construction with c planes that is itself contained in a conjecturally optimal
construction with c+ 1 planes (as such a construction will have between

(
c
3

)
and

(
c+1
3

)
joints.)

However, there is a large difference between
√
2
3

and 4
3
. The following observation is of note:

4

3

(n
2

) 3
2
=

√
2

3
n

3
2 .

This motivates the following:

Conjecture 1. Suppose we have a set S of n lines {`i} in R3. Given any such set S, let f(S) be

the number of joints formed by lines in S. Also, let g(`i, S) be the number of joints formed by the

line `i and two members of S. Then there exists a sequence {ai, 1 ≤ i ≤ k} with k ≤ n
2

satisfying

the following property for all 0 ≤ x ≤ k − 1:

g(`ax+1 , S/{`ai , i ≤ x}) ≤ (6f(S/{`ai , i ≤ x}))
1
3 .

In addition each joint intersects `ai for some i.

This conjecture implies that the number of joints satisfies J ≤
√
2
3
n

3
2 , as it allows us to take y =

n
2

in the above proof; since we have a construction that gives this lower bound asymptotically, its
proof would completely solve the joints problem in three dimensions. Conceptually, this conjecture
can be stated as follows: We can take away half of the lines, with each line containing a small
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number of the total joints, such that when we are done the remaining lines do not define any joints.
This implies that there must not have been many joints to begin with.

4 Looking at m dimensions

The same techniques that Guth and Katz use in their original paper can be used to bound the
number of joints in m dimensions, where a joint is formed by the intersection of m lines whose
tangent vectors are linearly independent. As in three dimensions, although the bound of O(n

m
m−1 )

derived below has been proved by Kaplan and Quilodrán in [1] and [2] respectively, the constant
factor given here is the best known.

We will reproduce the calculation for the lower bound:
Take a planes in general position in Rm. Any m − 1 intersect in a line, and any m intersect

in a point. Taking the points to be joints, we have
(

a
m−1

)
≈ am−1

(m−1)! = n lines that intersect in(
a
m

)
≈ am

m!
= J joints. Hence we have an asymptotic lower bound, by construction, of

J =
n

m
m−1 (m− 1)!

1
m−1

m
,

where the construction is modified as above for a number of lines n not of the form n =
(

a
m−1

)
.

For an upper bound, we can adapt a proof of the lemma above to show that there must be
some line with at most (m!J)

1
m joints on it. The rest of the argument generalizes as well; the

approximating function f(x) is defined by the differential equation f ′(x) = (m!f(x))
1
m , f(0) = 0

with solution

f(x) = x
m

m−1 (m!)
1

m−1

(
m− 1

m

) m
m−1

,

which gives an asymptotic upper bound of J ≤ f(y) (up to smaller terms). When we let y = n as
before, we have the following theorem:

Theorem 2. Suppose n lines in Rm determine J joints. Then:

J ≤

(
(m!)

1
m−1

(
m− 1

m

) m
m−1

+ ε

)
n

m
m−1 ,

for any ε > 0 when n is sufficiently large.

Something interesting happens if we can let y = n
m−1 , which is a natural way to generalize

letting y = n
2

before.
The new upper bound becomes:
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J ≤

(
(m!)

1
m−1

(
m− 1

m

) m
m−1

+ ε

)(
n

m− 1

) m
m−1

≤

(
(m− 1)!

1
m−1

m
+ ε

)
n

m
m−1 ,

which is precisely the lower bound we obtained above. This motivates a generalization of the
earlier conjecture to Rm, the proof of which would resolve this particular generalization of the
joints problem to m dimensions.

Conjecture 2. Suppose we have a set S of n lines {`i} in Rm. Given any such set S, let f(S) be

the number of joints formed by lines in S. Also, let g(`i, S) be the number of joints formed by `i
and two members of S. Then there exists a sequence {ai, 1 ≤ i ≤ k} with k ≤ n

m−1 satisfying the

following property for all 0 ≤ x ≤ k − 1:

g(`ax+1 , S/{`ai , i ≤ x}) ≤ (m!f(S/{`ai , i ≤ x}))
1
m .

In addition each joint intersects `ai for some i.

5 Generalizing the joints problem

With a conjecture that resolves the given problem, we now turn to expanding the scope of our
investigation. The most obvious generalization of the problem has four parameters:

• The dimension a of the intersecting hyperplanes; this is 1 in the original problem.

• The dimension b of their intersection; this is 0 in the original problem.

• The number k of objects that intersect at a joint; this is 3 in the original problem.

• The dimension m of the space; this is also 3 in the original problem.

We will utilize the following formula for hyperplane intersection: In Rm, a hyperplane of
dimension a and a hyperplane of dimension b will, if they are in general position, intersect in a
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hyperplane of dimension a+ b−m. (If a+ b < m, of course, the hyperplanes will not intersect at
all.)

In the original problem, we required that the tangent vectors of the intersecting objects formed
a basis for R3. To ensure that this condition is met, we will suppose that b + (a − b)k = m. In
addition necessarily a > b.

Given n hyperplanes of dimension a, a lower bound of (k−1)!
1

k−1

k
n

k
k−1 “joints” can be proven

by extending the 2-planes in general position argument. The appropriate hyperplanes to consider
are of dimension m+ b− a.

Suppose we have τ such hyperplanes.
Any k − 1 of these hyperplanes intersect to determine a hyperplane of dimension a, and k

such hyperplanes determine a hyperplane of dimension b. Hence there are n =
(
τ
k−1

)
≈ τk−1

(k−1)!

hyperplanes of dimension a and J =
(
τ
k

)
≈ τk

k!
of dimension b, giving an asymptotic construction

with

J =
(k − 1)!

1
k−1

k
n

k
k−1

as we asserted above.
Thus we have established the best known lower bound for this problem:

Theorem 3. Define a joint as the b-dimensional intersection of k a-dimensional hyperplanes in

Rm such that the tangent vectors of the k a-dimensional hyperplanes span Rm. Necessarily b +

(a − b)k = m. Then, for all ε > 0 and n sufficiently large, there exists configurations of n

a-dimensional hyperplanes that determine(
(k − 1)!

1
k−1

k
− ε

)
n

k
k−1

joints.

It is of note that this lower bound is independent of a, b, and m. We conjecture that it is the
tightest possible lower bound.

In this project, we explore a possible method of solution to this problem that uses the polyno-
mial method in a different way, and use it to revisit the joints theorem in R3.

6 Inhomogeneous joints in R4

Suppose we have p planes and ` lines in R4, with p + ` = n. Define a joint as an intersection of a
plane and two lines in a point such that the tangent vectors of the lines and the plane form a basis
for R4. Can we bound the number of joints as a function of n?
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Let us look first at an easier problem — given p planes and ` lines in R3, how many joints
can we make? A joint here will be any intersection of a line and a plane not containing that line.
Furthermore we will let p ≈ ` (in an asymptotic sense, c1 ≤ p

`
≤ c2 for some absolute positive

constants c1 and c2; we can use the approximation p = ` since we will only worry about exponents
for the remainder of this paper.)

Letting p = `, a clear upper bound is J ≤ p`, since each plane can only intersect each line
once.

Now let us revisit the two-dimensional joints problem: Suppose we have some configuration
of ` lines and J joints in R3. As a warm-up, we will give a proof of the earlier n2

2
upper bound

using the result we just proved.
Separate the n lines randomly into two sets, A and B, of size n

2
each. With positive probability,

half of the joints will be composed of two lines from different sets. Now we will change our
configuration in R2 into one in R3 by making all lines in the set A into planes; their second tangent
vector can be chosen arbitrarily as long as it does not lie in the same plane as the lines in set B.
We will have n

2
= ` lines and n

2
= p planes. Notice that we now have an upper bound of p` by our

above computation.
Since half of the original joints are joints under the new definition (the intersection of a line

and a plane), we have the inequality J
2
≤ p` or J ≤ n2

2
.

Although this reproves a trivial result, it motivates the examination of the problem in R4 as a
way to explore the original joints problem in R3. Using the same process as above, we can “lift”
constructions in R3 to create constructions in R4 with the same number of joints (up to a constant
factor) and the same total number of planes/lines. Hence bounds on the problem in R4 lead to
bounds in R3.

We can extend the expected value argument by supposing the lines (here we are considering a
collection of n lines and J joints in R3) are partitioned randomly into three disjoint subsets A, B,
and C, with |A| = |B| = |C| = n

3
. We can compute that an expected 6

27
J = 2

9
J of the original

joints are now composed of three lines, one from each of A, B, and C.
Our partitioning also defines a new configuration in R4: Make all the lines in |C| into planes

with their second tangent vector not contained in the original three-dimensional subspace (it can
be chosen arbitrarily given this condition). Our new set-up has (using the expected value) n

3
= p

planes, 2n
3
= ` lines, and 2

9
J joints.

Hence, since 9
2
O(n

3
2 ) = O(n

3
2 ), an upper bound of Cn

3
2 joints (for some constant C) in R4

allows us to transfer the upper bound given by the modified, inhomogeneous joints problem into an
upper bound for the original problem in R3. For the remainder of our discussion of this problem,
we will ignore the constant factor and focus just on the exponent, so our use of big O notation is
valid.
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Next, we will introduce the following theorem (proved using the polynomial method), pre-
sented in an equivalent form by Guth and Katz in [5] as Theorem 2.10:

Theorem 4. For any 0 < ε < 1
2
, a collection of L lines in R3 L with at least L

3
2
+ε intersections

contains a plane or regulus with at least C1L
1
2
+ε lines forming C2L

1+2ε intersection for absolute

constants C1, C2.

This theorem applies for L ∈ R4 as well by projecting into a three-dimensional subspace.

Corollary 1. For any 0 < ε < 1
2
, a collection of L lines in R4 L with at least L

3
2
+ε intersections

contains a plane or regulus with at least C1L
1
2
+ε lines forming C2L

1+2ε intersection for absolute

constants C1, C2.

The proof of the corollary begins by noticing that a small modification of the proof in [5] yields
the slightly stronger result:

Theorem 5. Let L be a set of L lines in R3 with at least L
3
2
+ε intersections (where ε > 0). Then

there exists a plane or a regulus that contains two families of lines L1 ⊂ L and L2 ⊂ L with

|L1|, |L1| ≥ CL
1
2
+ε for some absolute constant C and each line in L1 intersects each line in L2.

We will also use the following lemma:

Lemma 2. Suppose L is a set of L lines in R4. Then there exists a three-dimensional subspace S

such that each line l ∈ L can be projected to some l′ ∈ S and l1 ∩ l2 = ∅ if and only if l′1 ∩ l′2 = ∅.

Proof. We note that l′1 ∩ l′2 = ∅ implies l1 ∩ l2 = ∅. Now suppose that l1 and l2 do not intersect,
but their projections do. This means that the direction of projection must be parallel to a line
connecting a point on l1 and a point on l2. The directions of this kind form a set of measure zero
relative to the total number of projections, and since there are only a finite number of lines, there
must be some subspace S and associated projection satisfying the desired property.

Next, applying the lemma, we find a suitable projection that sends L to L ′. By our strength-
ened theorem, there exist subsets L ′

1 and L ′
2 of L of size O(L

1
2
+ε) that lie in a common plane

or regulus such that each line in L ′
1 intersects each line in L ′

2. By the property of our projection,
we have two subsets L1 and L2 of size O(L

1
2
+ε) where each line in one intersects each line in the

other. Hence the lines all lie in a common three-dimensional subspace and lie in a common plane
or regulus.

Our goal now is to use this corollary to prove that if we have p planes and ` lines in R4 with
2p = `, then the number of joints we can make is O((p+ `)

3
2 ).

We will start by applying the above theorem repeatedly to our collection of ` lines. Among
them, we can suppose that the ` lines intersect I = `

3
2
+k times. Although not all these intersections
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need to be joints (recall that a joint is only formed when a plane intersects the mutual intersection
of two lines), certainly there are at least as many line-line intersections as there are joints, and any
optimal configuration (as we have seen by our method of transferring configurations in R3 to R4)
can contain at least C(p+ `)

3
2 joints for some absolute constant C.

We will apply the theorem, removing objects (planes and reguli) and the lines they contain from
our configuration until the number of intersections If is less than C`

3
2 for some absolute constant

C, at which point the number of joints remaining must necessarily be less than C`
3
2 (since there

must be at least as many line-line intersections as joints).
Furthermore, when we have `′ lines left defining I ′ = `′

3
2
+ε intersections, the theorem implies

that there exists some plane or regulus containing at least C1
I′

`′
lines for some absolute constant

C1. We note that C1
I′

`′
≥ C1

C2`
3
2

`′
≥ C1

C2`
3
2

`
≥ C3`

1
2 , for absolute constants C2 and C3. This uses

the fact that I ′ ≥ C`
3
2 for some constant C by previous reasoning (since when I ′ = O(`

3
2 ) we no

longer have enough intersections to give a counterexample to the upper bound of Cn
3
2 ), and the

additional fact that `′ ≤ ` (this is obvious).
We are now left with some number s of planes and reguli, each containing at least C3`

1
2 lines;

we have shown that the remaining lines have at most O(`
3
2 ) intersections and thus can be ignored

in our upper bound analysis.
Note that s = O(`

1
2 ). We arrive at this conclusion by noting that each of the s objects contains

at least C3`
1
2 lines; in fact, our construction makes it clear that each of the s objects contains at

least C3`
1
2 lines that are not contained on any other plane or regulus (since, after each step, we

“ignore” the lines already present in one of our removed objects). Thus we have the inequality

C3`
1
2 s ≤ `,

and hence s ≤ C`
1
2 for some absolute constant C.

Now, we will consider the joints in this problem. Recall that our four-dimensional joints are
made by the intersection of a plane and two lines. There are two cases we need to consider: the
line-line intersection can occur between two lines in the same plane or regulus, or between two
lines in different surfaces.

If the two lines are contained in the same plane or regulus, then there is an easy upper bound
on joints of this form. The plane being used to create the joint cannot intersect a given surface
(plane or regulus) more than twice before they both lie in a common three-dimensional subspace
and violate our spanning conditions; hence we have a limit of two joints per surface per plane, or
J ≤ 2ps ≤ 2C`

1
2p = 2C(2n

3
)
1
2
n
3
= O(n

3
2 ).

Otherwise, the joint consists of a plane intersecting two lines from different objects (planes or
reguli). Note that the number of joints of this kind is bounded above by the number of intersections
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between lines lying in different surfaces. If a given line lies in an object (plane or regulus) S1

and intersects some other surface (plane or regulus) S2 in more than two points, then it must
be contained in S2 as well. Hence any joint containing an intersection between our given line and
another line in S2 has already been counted, as it was bounded by our consideration of intersections
that are completely contained in one surface (plane or regulus).

Hence each line, if it is to be contained in a joint of this second type, must intersect other
surfaces in at most two points. Using the previous principle that the number of joints is bounded
above by the number of intersections, we can see that the number of joints of this second kind
satisfies J ≤ 2`s ≤ 2C`

1
2 ` = 2C

(
2n
3

) 1
2 2n

3
= O(n

3
2 ).

Combined, the separate bounds proves the following theorem:

Theorem 6. p planes and ` lines in R4 with p = n
3

and ` = 2n
3

combine to create at most O(n
3
2 )

joints.

By extending a given construction in R3 to a configuration in R4 using our previous work, this
theorem gives an entirely new proof of the joints theorem of Guth and Katz.

7 Further research

The joints problem is far from resolved, and two main directions for further research present them-
selves. The first of these is the problem of determining the asymptotic constant for the already
solved cases of the joints theorem — that is, the case of m lines intersecting in a single point in
Rm. A proof of the “line-removal” conjecture above, along with a suitable generalization to m
dimensions, would resolve this problem.
The second direction is dealing with the general problem. Fruitful results have already been ob-
tained with the polynomial method, and it may be wise to attempt to apply polynomials to solve
more cases of the theorem. However, polynomials are much more well-behaved on lines than they
are on planes. In particular, a nonzero polynomial on a line can only vanish on a finite number of
points, while a polynomial can vanish along a curve in a plane and not on the plane itself.

A new approach to this second direction, and one explored in this paper, is considering the
inhomogeneous joints problem and attempting to bound the harder problem combinatorially. This
still may incorporate the polynomial method, as the theorem due to Guth in [5] is proved using
polynomials. Perhaps the next step is to consider a natural extension of the problem in R4 to R7,
where joints are formed by the intersection of two planes and a 3-hyperplane. A bound here could
be used to attack the problem in R6 where joints are formed by the mutual intersection of three
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planes.

In terms of the techniques developed in this paper, the most novel is the use of a differential
equation to tighten the bound of the constant factor in the original joints theorem. This could
have ramifications for other combinatorial or geometric problems, giving better constant-factor
bounds on the behavior of sequences of the form xi+1 = xi − f(xi), where f(x) is an increasing
function of x that can be well-approximated by a differentiable function. Of course such results
are meaningless except asymptotically, since the approximation f(x+ 1)− f(x) is roughly equal
to f ′(x) in an asymptotic sense only for functions f(x) = O(xn).
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