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Abstract—We live in a world where our personal data are both
valuable and vulnerable to misappropriation through exploitation
of security vulnerabilities in online services. For instance, Drop-
box, a popular cloud storage tool, has certain security flaws that
can be exploited to compromise a users data, one of which being
that a user’s access pattern is unprotected. We have thus created
an implementation of Path Oblivious RAM (Path ORAM) for
Dropbox users to obfuscate path access information to patch this
vulnerability. This implementation differs significantly from the
standard usage of Path ORAM, in that we introduce several
innovations, including a dynamically growing and shrinking tree
architecture, multi-block fetching, block packing and the possibil-
ity for multi-client use. Our optimizations together produce about
a 77% throughput increase and a 60% reduction in necessary
tree size; these numbers vary with file size distribution.

I. INTRODUCTION

Nowadays, with many people possessing a multitude of
devices, many of which have limited local storage, it is popular
to store files in the cloud. Among the most popular cloud
storage tools is Dropbox, which is compatible with computers
and mobile devices, and allows users to store up to 2 GB
of files for free (additional storage is available for a monthly
fee). For most users, Dropbox presents adequate security; all
files are encrypted when stored on their servers. Nevertheless
some will rightfully find certain issues with their system. One
is that Dropbox can see which files you edit. This, known as
the users access pattern, is a key piece of information, which
Dropbox could potentially gather. Of course, Dropbox itself is
trustworthy, but nowadays the US government has the power
to request data from web services, and the access pattern may
be included. While standard encryption offers some protection,
it does nothing to hide a users access pattern.

Previous works have shown the importance in protecting
access pattern. Memory access patterns can leak information
such as a programs control flow, which concerns conditional
branches of the program and the order of commands executed
[1]. Also, M.S. Islam et al. have shown how, from an encrypted
email repository, adversaries can infer 80% of search queries
simply from access patterns [2].

Oblivious RAM (ORAM) is a cryptographic primitive that
completely eliminates the information leakage in memory
access pattern. In ORAM schemes, a client stores its data
in encrypted and shuffled form on an untrusted server. On
each access, the client reads the untrusted memory, reshuffles
that memory and possibly updates some state in trusted local
storage called the client storage. Under ORAM, any memory
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access pattern is computationally indistinguishable from any
other access pattern of the same length.

Since the initial ORAM proposal by Goldreich and Ostro-
vsky [3], [4], [5], researchers have striven to improve the ef-
ficiency and reduce the trusted storage requirement of ORAM
[6], [7]1, [8], [9], [10], [11], [12], [13], [14], [15], [16] for three
decades. Of particular interest among them is Path ORAM
[16]. Path ORAMs bandwidth and client storage are both
logarithmic in its capacity. Furthermore, it is extremely simple
and suitable for real world implementation. Immediately after
its proposal in 2012, Path ORAM gained popularity in many
applications due to its simplicity and efficiency.

In this work, we adapted Path ORAM for use with obliv-
ious cloud storage, and propose several optimizations specific
to the cloud storage setting. First, we have designed a system
where ORAM on Dropbox can be used between multiple user
computers. We also propose the optimizations of multi-block
fetching, which improves performance by 51.9%, and block
packing, which saves 50-70% storage overhead. Finally, we
propose a dynamically growing and shrinking tree, providing
the necessary storage size flexibility to work with Dropbox. All
our optimizations together produce about a 77% throughput
increase, which varies with file size distribution.

Previous oblivious storage works include PrivateFS [17],
Shroud [18] and ObliviStore [19]. ObliviStore, which is based
on the SSS ORAM [13] with careful engineering claims the
best memory throughput. A recent work named Burst ORAM
[20], built on top of ObliviStore, optimizes response time
instead of throughput. We remark that the goal of this paper
is not to claim superiority of Path ORAM over ObliviStore or
Burst ORAM. Rather, the ideas in this paper apply to those
constructions as well, and we simply choose Path ORAM to
evaluate our proposal due to its conceptual simplicity.

Organization. We will first provide some background on
Path ORAM in Section II. We will then explain the system
architecture behind our ORAM implementation in Section III.
Then, after explaining our various optimizations and improve-
ments in Section IV, we will present some evaluations results
in Section V.

II. BACKGROUND ON PATH ORAM

In Path ORAM, data blocks are arranged into a binary tree,
with up to a constant number blocks at each node of the tree
(Figure 1). Each block is mapped to random path of the tree. To
access a block, the Path ORAM algorithm accesses all blocks
along the targets path.
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Fig. 1. An example of a Path ORAM construction consisting of the binary
tree (untrusted) and the stash and position map (trusted).

We summarize how Path ORAM works in Figure 1. The
reader can refer to [16] for more details. The binary tree is
stored on the server. Suppose it has height L and 2% leaves.
The levels are numbered O to L, where level O is the root and
level L contains the leaves (in a complete tree). Each node in
the binary tree is called a bucket, and contains Z blocks. If
a bucket contains less than Z real blocks, the remainder are
composed of dummy blocks, which are indistinguishable from
real blocks after encryption.

On the client side, we construct a data structure called the
stash, which stores a small subset of the data blocks, and a
position map that assigns each block to a path in the tree.
Every path is uniquely defined as leading from the root to
one of the 2% leaf buckets. Importantly, mapping is random,
allowing for multiple unrelated blocks to be mapped to one
leaf. This is shown in Figure 1: for example, both blocks B and
E are mapped to leaf 1, and are required to reside on the path
defined by this leaf (referred to as path 1). The position map
is updated as blocks are accessed and their leaf assignments
changed. This is critical because Path ORAM maintains the
invariant that if the block is not on its assigned path, it is in
the stash (if it is not, there is a bug).

Reading/writing a block consists of several steps. First, we
consult the position map to determine what path the target
block is on. Then, we fetch the blocks on that path from the
tree. Based on the invariant just mentioned, it should be among
those fetched blocks or in the stash. We can then securely
access the target block. After making any necessary changes
to the block we assign it to a different path using the position
map. Finally we take all blocks originally fetched and write
them back into the tree.

In the past many papers have focused on Path ORAM
systems and their optimizations. However, this is the first
applying Path ORAM directly for use with Dropbox, and the
first to explore optimizations unique to the Dropbox usage
case.

III. SYSTEM ARCHITECTURE

We introduce the general organization of our design and
several changes to the basic implementation to better suit
Dropbox.

Fig. 2.

Basic structure of our Path ORAM implementation
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Fig. 3. Visual representation of how the User File System splits and then
reads/writes files from/to Dropbox.

A. Big Picture

The overall interface of our design consists of three parts:
the client, the Path ORAM implementation and Dropbox.
Instead of the client directly writing and reading files to the
Dropbox folder, we implemented the ORAM as an intermedi-
ary controller between the two. So a user will directly interact
with the User File System (See Section III-B), which in turn
interacts with the ORAM controller to read and write files.
The ORAM controller interacts with Dropbox by having the
buckets of the tree written to the Dropbox folder. The Dropbox
service will then sync the contents to the cloud. When reading
a file, the bucket files are downloaded. As we will discuss
in Section III-C, a system with multiple computers accessing
the same files requires the stash, position map, and other
dictionaries to be written to Dropbox as well, which can be
downloaded by other computers in the system. These structures
which are normally kept in secure storage have to be encrypted
with a secret key.

B. User File System

Dropbox’s baseline functions allow users to read and write
files to a remote server in the cloud. Thus, we needed a way
for our ORAM system to support the reading and writing of
files of various sizes. Our solution was implementing the User
File System, which enables the writing of files of different
sizes.

The User File System interacts with the ORAM controller
and provides the users with an interface to read, update and
delete files of arbitrary size. The User File System consists of
several dictionaries which hold vital metadata. Its main feature
is to partition files into chunks, whose size is a parameter we
call segment size. These chunks are then each written to or
read from the ORAM.



To write a file, we split it up into subfiles each containing
a number of bytes equal to (or less than, in the case of the
last subfile) the segment size. We then assign each subfile a
unique segment ID (stored in a dictionary) that allows us to be
able to track the individual segments when we want to read the
file again. Then, we write each file segment to the ORAM and
update another dictionary with the number of partitioned pieces
in that particular file. When reading a file, we look up the file
name in a dictionary to retrieve the number of segments in
that file. Then, we obtain the individual segment IDs of each
data segment and fetch them from the ORAM. The data is
then stitched together and returned to the user. Deleting a file
works similarly to reading. After looking up the segment IDs
of the file fragments, we simply delete those data from the
ORAM and delete their corresponding information from the
two metadata dictionaries.

C. Multi-Computer

One of the major reasons cloud storage programs such as
Dropbox are so popular is that a user can access and change
files on one computer, and then move to another computer to
access the same files. In order to support this feature, we added
functionalities to the file systems.

When a user logs off from the computer, the dictionaries
in the User File System, the position map, and the stash
are written to the Dropbox folder, and then synced to the
remote server. An important implication is that these files are
encrypted and padded to a constant file size when written to
Dropbox to ensure security and prevent an adversary from
gaining information from file size or access pattern. When the
user wants to access his files from another computer, he/she
downloads these files from the server to reconstruct the User
File System and ORAM metadata structures.

D. Initial Evaluations

Our current implementation is significantly slower than
directly using Dropbox without ORAM. Thus, the implementa-
tion has some apparent drawbacks. The major problem comes
from partitioning an immensely large file into millions of
segments (based on the assigned segment size), which means
that reading or writing one large file takes a very long time.
Along with this, a static tree size is a problem when using
Dropbox because we dont want space to be wasted (more
space equals more money). With these issues in mind, we
sought to develop optimizations to improve upon our initial
implementation.

IV. OPTIMIZATIONS

In this section we provide detailed explanations and moti-
vation for the new optimizations we have implemented: multi-
block fetching, block packing and a dynamically growing and
shrinking tree size.

A. Multi-Block Fetching

One idea to improve performance dramatically is to fetch
multiple data blocks in each access, thus cutting down on
the total number of accesses required. Unfortunately, usually
when using ORAM, it is unclear how data blocks are grouped

outside, so it is hard to know which groups of blocks to
fetch together. However, in our implementation of ORAM
with Dropbox, the data segments stored can be grouped in a
defined way, with each grouping corresponding to a particular
file. Thus we can cut down on the number of tree accesses
we perform by putting segments from the same file on the
same path in the tree and fetching them at the same time.
The technique is as simple as grouping segments from each
file into n-tuples, mapping them all to the same path, and
then fetching them all at the same time. Theoretically this
should reduce the number of accesses needed by a factor of n.
Unfortunately, however, grouping a great number of segments
together in the same path produces inefficiency. Any individual
path may become congested, slowing down the operation.
Through evaluations of file access speed we have managed
to find an optimal value for n for this grouping process.

B. Block Packing

One way to speed up the ORAM operations is to cut down
on the number of partitions of a file. In order to do that, we
need to use a large segment size. However, larger segment
sizes hurt small files because a tremendous amount of space
is wasted, and it takes longer to read small files.

With this in mind, our approach to improving this aspect of
the ORAM was to implement block packing, which essentially
packs more than one file segment together into one block. The
motivation behind this approach comes from the idea that a
small file does not necessarily need to be the only file present
in a block. Additionally, leftover data that does not divide
evenly into the segment size can also be packed into the empty
spaces of a block. By doing this, space is saved and not wasted,
resulting in a smaller tree and smaller path lengths (see Section
IV-C), and consequently reduces file access time (though only
slightly).

Block packing works as follows. We add two more dictio-
naries to the User File System: one holds the amount of space
left in a block and the other holds the start and end offsets
of a certain file segment inside of a block. We write a file of
an arbitrary size. The full segments of data (take up an entire
block) are written normally to the ORAM. We then look for
available space in a block for the very last segment (which,
in the case of a small file will be the entire file). If we find a
block that already has some data in it and that has sufficient
excess space, we append the final segment to the end of the
already existing data, and update the dictionaries accordingly.
If we do not find an available block, we write the data to an
empty block and add the ID of that block to the dictionary
with its amount of empty space. When we want to read the
file, all the segments except the last are read normally. We find
the position of the last segment in the block and read out the
specific portion of the data.

Deleting a file becomes slightly more complicated. All
file segments except the last one are deleted normally. When
deleting the last segment of a file, we run into the problem
of there possibly being a hole of no data inside a block. Our
solution was to shift the data after the deleted segment as far
up in the block as possible so that there are no gaps in the
middle of a block. We then update the dictionaries for the
shifted segments of data.



C. Dynamic Growing and Shrinking Tree

A normal ORAM implementation involves a storage space
that is fixed in size (e.g., main memory or hard drive of a
computer). However, Dropbox presents the unique problem
of a dynamically sized storage space. First, users may wish
to store sensitive files in an ORAM system alongside less
important files stored unencrypted in Dropbox. By supporting
resizing of the tree we support this usage scenario. Second,
Dropbox allows users to increase the size of their storage by
either paying or sharing the service with friends. By supporting
tree resizing we allow users to change their storage space
without having to create a new ORAM library each time. Thus,
resizing provides convenience to the user in a way unique to
this project.

The first problem we encounter is to determine when to
resize. Previous work suggested that the optimal utilization
(meaning the fraction data block slots that are used) is around
50% [21].

Our implementation supports both growing and shrinking.
Both functions are triggered based on current utilization,.
When the utilization goes above a certain threshold we grow
the tree until the utilization goes back down to a target level.
When it goes below a certain threshold we shrink (to save
Dropbox space), with the utilization going back up to a target
level.

Growing the tree works as follows. First, we add the correct
number of buckets to the leaf end of the tree. Obviously this
reveals the information that we are growing, and that the total
size of our files stored has gone beyond some threshold, but
that information is both non-critical and practically unavoid-
able to leak. We then correct all leaves in both the position
map and the stash in order to conform to the new leaf numbers.
Nodes with new children are invalidated as leaves, so records
pointing to these nodes are reassigned to one of the children.

Shrinking works similarly; first we remove the correct
number of buckets from the leaf end of the tree, dumping
their contents into the stash. Again, this leaks the information
that our total file size must have decreased. We then correct
all leaves in the position map and the stash by truncating the
path so that it lines up with the correct leaf, and leave the ones
in the tree to sort out later.

V. EVALUATIONS

In this section, we evaluate the performance of our opti-
mizations.

A. Methodology

The CPU Model of the machine used for the experiments
is Intel(R) Core™ i3-2100 CPU @ 3.10GHz. The disk model
is ST31000524AS (7200 RPM). Windows 7 operating system
and Python 3.4 were used. Our encryption algorithm was Ad-
vanced Encryption Standard (AES) 128-bit in counter (CTR)
mode, in the PyCrypto package v2.6.1.

For all the experiments except the one in Section V-E, we
utilize a distribution of files of various sizes to better simulate
the contents/actions of a real file system, by reading/writing
1000 files based upon this cumulative distribution. This file
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distribution was chosen from previous work done on file
system workloads [22], and is reproduced in Figure 4.

For all experiments, the parameters were kept at constant
values (unless we were testing that parameter). The ORAM
tree size (if auto resizing is off) was dependent on the amount
of data written to it, twice the total file size. Segment size was
64 KB (optimal as indicated by Figure 5) with bucket sizes of
Z = 3. The maximum stash size was 100. The utilization ratio
that triggers tree growth was 0.45 and for tree shrinkage 0.55.
We use throughput in Mega Byte per second (MB/sec) as the
performance metric.

B. Optimal Segment Size

We performed a sweep study to evaluate the optimal
segment size into which files are partitioned for storage. The
sweep study in Figure 5 shows that optimal segment size is 64
KB. It is not surprising that there is an optimal segment size.
For small segment sizes, large files are handled inefficiently
because they gets partitioned into many more pieces, resulting
in a massive number of operations to read/write one file. For
large segment sizes, small files take longer to read because of
the majority of filler data in a block.

C. Initial ORAM Efficiency

We evaluated the overhead cost of implementing of Path
ORAM with that of encryption alone. As a baseline we
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compared this to reading/writing files to the local disk (Shown
in Figure I). Encryption added a little overhead (about 1.7
times slower) to the operations. Incorporating ORAM made
the operations an additional 37 times slower when compared
to encryption alone. As indicated by the table, the performance
of our Dropbox-ORAM implementation without any optimiza-
tions is very slow, as expected. The remainder of this section
evaluates the effectiveness of our improvements.

D. Multi-Block Fetching

As noted in Section IV-B, we utilized multi-block fetching
with segment grouping to improve the efficiency of our tree
architecture. From Figure 6 we can see that the optimal
grouping size appears to be 3, which also indicates that
multiple block fetching does improve performance. However,
larger grouping sizes create more congestion in some paths.
To compensate for congestion, a technique called background
eviction has to be employed, which takes additional overhead
[21], [23].

E. Block Packing

To evaluate the impact of block packing on performance,
we assessed two dependent parameters, tree size and data
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throughput. For both tests, we wrote 1000 files of the same
size to the ORAM and then recorded the throughput of reading
the files 1000 times. Automatic resizing was turned on in
order to illustrate the space saving aspect of this optimization.
The file sizes of 16, 32 and 70 KB were chosen specifically
for this test. Without block packing, the size of the tree was
expected to be the same for both the 16 KB files and the 32
KB files because each file will take up one block, and with
block packing, the size was expected to be 1/4 and 1/2 of the
previous sizes because 4 times and 2 times as many files can be
packed together in a block, respectively. The results in Figure
7 confirm our expectations. The 70 KB file was chosen to
illustrate that block packing works with the leftover segments.
As shown in the graph, the tree was about two times smaller,
because the extra 6 KB file segments were packed together,
saving space. Block packing also yielded a small improvement
in data throughput. The saved space results in a smaller tree
structure. As a result the time taken for a path read/write is
expected to be somewhat shorter.

We tested this optimization only in tandem with dynamic
growing and shrinking. The reason for this was that the main
goal of block packing is to save space, and so the only way
a user will benefit is if the tree shrinks to a smaller size
accordingly. The reduced tree size made possible by block
packing then provides a significant performance increase, seen
in Figure 7. Without dynamic growing and shrinking, block
packing produces a negligible performance increase.

FE. Dynamic Growing and Shrinking

To demonstrate the implementation of our dynamic tree
structure, we tested the impact of random file addition or dele-
tion to the tree structure. Thirty-two actions were performed
using files of random sizes for this demonstration. Figure 8
displays the impact of an increasing and decreasing total file
size stored in the tree. Whenever the tree utilization breaks the
threshold set at 0.45 or 0.55, the tree to resizes to fulfill the
target 50% utilization.

G. Total Optimization Impact

All of our improvements taken together yield significant
savings in both storage space and time. Block packing alone



yielded a performance gain on average of 15%, and multi-
block fetching with groups of 3 yielded a performance gain
of 52%. With both optimizations running together we would
expect total gain of about 60%. The estimated throughput is
1.06 MB/s.

VI. CONCLUSION

Using an ORAM system with Dropbox allows the user to
hide a key piece of information, his/her access pattern. Doing
so, however, costs a significant overhead. To counteract this,
we have introduced a few optimizations, which, as shown in
the evaluations section, cut down on the overhead and increase
throughput. Additionally, to conform best with Dropbox, we
have altered the Path ORAM system with improvements,
including potential for multi-computer use and a dynamically
resizing tree. These developments are unique to any Path
ORAM work that has been previously described. Our goal is
that continued optimization will increase Path ORAMs speed
sufficiently that it may be practical for mainstream use.

To summarize our work, we first designed and imple-
mented a Path ORAM system to work with Dropbox. We then
performed optimizations including multi-block fetching, block
packing, and a growing and shrinking tree, improving perfor-
mance by an estimated 77%, and reducing storage overhead
by 50-70%. Both of these savings provide us with flexibility
that is necessary for Path ORAM to work harmoniously with
Dropbox.

In the future we plan to make our work into a public full-
fledged software package, with a crash recovery mechanism
and possibly other optimizations.
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