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Abstract. Given a graph, an acyclic orientation of the edges determines a partial ordering of the vertices. This
partial ordering has a number of linear extensions, i.e. total orderings of the vertices that agree with the partial

ordering. The purpose of this paper is twofold. Firstly, properties of the orientation that induces the maximum

number of linear extensions are investigated. Due to similarities between the optimal orientation in simple cases
and the solution to the Max-Cut Problem, the possibility of a correlation is explored, though with minimal

success. Correlations are then explored between the optimal orientation of a graph G and the comparability

graphs with the minimum number of edges that contain G as a subgraph, as well as to certain graphical colorings
induced by the orientation. Specifically, small cases of non-comparability graphs are investigated and compared

to the known results for comparability graphs. We then explore the optimal orientation for odd anti-cycles

and related graphs, proving that the conjectured orientations are optimal in the odd anti-cycle case. In the
second part of this paper, the above concepts are extended to random graphs, that is, graphs with probabilities

associated with each edge. New definitions and theorems are introduced to create a more intuitive system that
agrees with the discrete case when all probabilities are 0 or 1, though complete results for this new system would

be much more difficult to prove.
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1. Introduction

In real-world problem modeling, a given population can be modeled as a collection of vertices of a graph.
Two members of this population can be connected by an edge if, after some initial point in time t0, they were in
the same place. Suppose now that a disease entered the population at time t0 and that, with time, it afflicted
all members. We would like to know the most likely order (in time) in which the members got the disease. If we
know, for each meeting, which of the two members contracted the disease first, we can orient the edge towards
the member who contracted it the latest. If this is done for all meetings, an acyclic orientation of the graph is
produced. For each acyclic orientation, a linear extension provides a total ordering of all members. Hence, the
most likely orientation is the one with the maximum number of linear extensions. For this paper, we will be
investigating the properties of this optimal orientation.

Firstly, we will rigorously define the main vocabulary to be used for the rest of this work.

Definition 1. An orientation of an undirected graph G(V,E) is a directed graph formed by assigning a direction
to each edge of G. Such an orientation is said to be acyclic if there do not exist vertices v1, v2, · · · , vk with k ∈ P
such that there is an edge directed from vi to vi+1 for all 1 ≤ i ≤ k (with vk+1 = v1).

Definition 2. A directed path of length k in an orientation of a graph G(V,E) is a set of edges e1, · · · , ek for
which each pair of consecutive edges are adjacent, and where the sink vertex of one edge is the source vertex of
the next.

Any acyclic orientation of a graph G(V,E) induces a partial ordering < on the set of vertices of G, defined so
that for two vertices v1, v2, we have v1 < v2 if and only if there is a directed path from v1 to v2 along the edges
of the orientation.

Definition 3. A linear extension of an acyclic orientation is a total ordering <T on the set of vertices such
that if v1 < v2 in the partial ordering, then v1 <T v2.

For most acyclic orientations of most graphs, linear extensions are not unique. As mentioned, given an
undirected graph G(V,E), we would like to determine the acyclic orientation of G that maximizes the number
of linear extensions. For certain graphs, this result is known. I will now present these known results and brief
outlines of their proofs, all of which come from [Gir14].

Theorem 1. [Sta88] For a bipartite graph G(V,E), the orientations that maximize the number of linear exten-
sions are exactly the bipartite orientations, that is, the orientations with no directed paths of length 2.

Figure 1. An example of a bipartite orientation

Proof. The main idea of this proof is to fix a bipartition of the graph and an orientation where all directed
edges point from one side of the bipartition, called the source side, to the other side of the bipartition, called
the sink side. This type of orientation is also know as bipartite orientation. Firstly, we start with an arbitrary
labeling of the n := |V | vertices with the set of integers between 1 and n, so that no two vertices are assigned the
same integer, and we annotate down the acyclic orientation obtained from directing every edge from the smaller
number to the larger number. Then, a set B is constructed that consists of the vertices whose adjacent directed
edges differ in orientation from those of the bipartite orientation. If B is the empty set, then the orientation is
bipartite and we are done. Otherwise, B has a maximal element on the source side and a minimal element on the
sink side. Swapping the labels of these two vertices and re-calculating the orientation of the graph according to
this re-labelling reduces the number of elements of B, and it can be shown that the number of linear orientations
of the resulting orientation is not less than the original number of linear orientations. This process can then be
repeated until B is the empty set, at which point the orientation is bipartite, and since the number of linear
extensions is non-decreasing, the bipartite orientation maximizes the number of linear extensions. �

Using this result, we can find the orientation that maximizes the number of linear extensions for odd cycles
as well. Here is another proof outline.
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Theorem 2. For an odd cylce G(V,E), the orientations that maximize the number of linear extensions are
exactly the orientations with exactly one path of length 2.

Figure 2. An optimal orientation for the odd cycle on five vertices

Proof. Since G is an odd cycle, in every acyclic orientation of G there must exist at least one directed path of
length 2, since otherwise G would be bipartite. Let one such path in G connect vertices v1, v2, v3 such that there
is an edge that goes from v1 to v2 and an edge that goes from v2 to v3. An effective edge can then be added
that goes from v1 to v3, and if the two edges between v1, v2, and v3 are replaced by this effective edge, the result
is a bipartite graph. It is known by the previous theorem that the maximum number of linear orientations for
such a bipartite graph is a bipartite orientation with no paths of length 2, and this can be extended back to the
original graph, so there would be exactly one path of length 2 for an orientation that maximizes the number of
linear extensions. �

The techniques needed for the remaining result are a bit more involved, so for brevity I will simply present
the result without a proof. Details can be found in [Gir14]. Firstly, we need to define two more terms.

Definition 4. A comparability graph is a graph such that there exists a partial ordering < on the set of its
vertices V , and there is an edge between vertices v1 and v2 if and only if either v1 < v2 or v2 < v1.

Definition 5. An orientation of a comparability graph G is called transitive if in the order implied by the
orientation, two vertices are comparable if and only if there is an edges between them in G.

Theorem 3. [Gir14] For a comparability graph G, the orientations of G that maximize the number of linear
extensions are exactly the transitive orientations of G.

These results and their consequences are the main known tools for finding the optimal orientations of any
given graph, and we will later exploit these tools to prove novel results.

What follows is an introduction to the Max-Cut Problem, definined below. The motivation for including the
description of this problem are the similarities between its solutions and optimal orientations, specifically in the
case of bipartite graphs and odd cycles. These similarities led to the formation of Conjecture 1, also discussed
below.

2. The Max-Cut Problem

Firstly, following the discussion in [Gir14], I will present what is known as the Max-Cut Problem for a graph
G, and then explain how it relates to the problem of finding the orientations of G that maximize the number of
linear extensions.

Problem 1. Given a graph G(V,E), determine a partition of V into two classes such that the number of edges
between these two classes is maximized.

This problem is known to be, in general, NP-Complete; however, for planar graphs, it can be solved in
polynomial time. The following conjecture is aimed at relating the Max-Cut Problem to the problem of finding
the orientation that maximizes the number of linear extensions.

Conjecture 1. Given a graph G(V,E) and a solution to the max-cut problem, there exists an orientation of G
that is bipartite with respect to the two blocks of this max-cut solution, and that also maximizes the number of
linear extensions.
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The converse is not necessarily true — that is, given an orientation of G that maximizes the number of linear
extensions, there does not necessarily exist a solution to the Max-Cut Problem such that the orientation is
bipartite with respect to it. I present a simple counter-example.

Example 1.

Figure 3. A counter-example to the converse of Conjecture 1

Consider the above oriented graph. The orientation is transitive, and so by Theorem 3, maximizes the number
of linear extensions. The above partition (consisting of the two sets of vertices on each side of the curve) has
4 edges going through it, and since the graph is not bipartite, any solution to the Max-Cut Problem for this
graph has four edges. However, it can be checked that this orientation is not bipartite for any such partition
since there are two paths of length 2, and so the converse of the conjecture is not necessarily true.

Clearly the conjecture is true for bipartite graphs. It is also true for odd cycles. Suppose an odd cycle has
2n + 1 edges. Then it can be easily seen that the solution to the Max-Cut Problem for this graph has 2n edges
between the two partitions. Assigning orientations to each of these 2n edges such that the orientation is bipartite
results in the bipartite orientation identical to the one in the proof of Theorem 2. The final edge can be oriented
either way and the result would still be that the orientation has the maximum number of linear extensions.

Unfortunately, after further investigation, the conjecture was proven to be false. I present here the construc-
tion, since it is simple, ingenious, and relevant for the disussion.

Figure 4. A counter-example to Conjecture 1

Consider the above graph and the given solution to its Max-Cut Problem. If this conjecture is to be true
(that is, for an optimal orientation to be bipartite with repsect to this solution), the two edges not intersected
by the given curve must both be oriented in the same direction. However, this will always induce a new edge in
as a diagonal of the square, no matter which way the two other edges of the square are oriented. Therefore, any
orientation bipartite to the given solution cannot be transitive. Since the original graph was a comparability
graph, by Theorem 3, any such orientation cannot maximize the number of linear extensions, so Conjecture 1
is false in general. We note that, actually, even though the solution to our problem is well-understood for
comparability graphs, the solution to the max-cut problem for them is unknown.
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3. Induced Colorings

Here, I will introduce the idea of associating a coloring of a graph with an acyclic orientation. Consider an
acyclic orientation of a graph G(V,E). For each vertex, there is a set of directed paths associated with that
vertex that consists of all directed paths whose final edge is directed into that vertex. Each vertex is then
assigned a number equal to the maximum length of any paths in the set. These numbers then partition the
vertices of G, and this partition determines a coloring of G.

Theorem 4. This coloring induced by the orientation is a proper coloring.

Proof. Suppose, on the contrary, that there are two vertices v1 and v2, each with the same value p, that are
connected by an edge e. Since both vertices have a value p, for both vertices, there exists a path of length p.
Since the orientation is acyclic, these two paths can go through v1 and v2 at most once. Now suppose, without
loss of generality, that e is directed from v1 to v2. The maximum path of v1 cannot pass through e, since that
would mean it passes through v1 then returns to it, impossible for an acyclic graph. Therefore, there exists a
path of length p that ends at v1 and does not pass through e. However, adding e to this path results in a path of
length p+ 1 that ends at v2, contradicting the assumption that the value of v2 was p. Therefore, no two vertices
in the same partition can have a connecting edge, so the coloring is proper. �

In fact, this is part of the Gallai-Hasse-Roy-Vitaver Theorem [Roy67], which states that, over all acyclic
orientations of a graph, the minimum length of the maximum directed path is equal to the minimum number of
colors with which the graph can be properly colored.

With an induced proper coloring now defined, it becomes a natural question to ask when this proper coloring
is a minimal proper coloring.

Conjecture 2. Suppose a graph G(V,E) has an acyclic orientation that maximizes the number of linear exten-
sions. This orientation also induces a minimal proper coloring.

This conjecture is easily shown to be true for both bipartite graphs, odd cycles, comparability graphs, and
some minimal non-comparability graphs that we would like to study.

Here now is a second conjecture that may be related to the above conjecture, though a definite correlation
has not yet been found.

Conjecture 3. Given a graph G(V,E), an acyclic orientation that maximizes the number of linear extensions
also minimizes the number of edges in its induced comparability graph, i.e. the graph obtained by adding an edge

between every pair of comparable vertices in the orientation. Hence, from the set of all
(|V |

2

)
pairs of vertices,

the orientation minimizes the number of comparable pairs among all acyclic orientations of G.

By Theorem 3, this is true for comparability graphs. This is also true for odd cycles. By Theorem 2, an
orientation of an odd cycle has a maximum number of linear extensions if and only if it has exactly one path of
length 2, and so if and only if the comparability graph has exactly one more edge than the cycle itself. Since odd
cycles are not comparability graphs, the comparability graph for any orientation must have at least one more
edge than the cycle, and so these orientations do indeed minimize the number of edges in the comparability
graph.

Perhaps, I thought, an easier approach than dealing with these two conjectures separately is to show that
minimal proper colorings are directly related to orientations with minimal number of edges in the comparability
graph, in the following sense:

Conjecture 4. Given a graph G(V,E), any acyclic orientation that minimizes the number of edges in the
comparability graph, also induces a minimal proper coloring.

However, this conjecture is false, as shown below.
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Figure 5. Counter-example to Conjecture 4

The given orientation of the above graph — call it G — only induces a single edge, and since it is not a
comparability graph, this is the minimum possible number of edges induced by the comparability relation in an
acyclic orientation. However, the coloring of the graph induced by this orientation has four colors, while the
graph itself is three-colorable, meaning Conjecture 4 is false in general.

Example 2.

Let us investigate G now in further detail. Several interesting behaviors that differ from those of a compa-
rability graph are naturally evidenced in G, so it will be convenient to explore in greater detail this graph in
relation to our problem. Examples of these unique behaviors are the following: G is the simplest graph for which
the optimal orientation is not known from a proof but only from exhaustive computation; and moreover, this
graph already disproves Conjecture 4.

Let us work on the enumerative problem of computing the number of linear extensions of two different acyclic
orientations of G. Label the vertices as follows: a is the vertex with degree 4, then b, c, d, e clockwise around the
five-cycle. Of the remaining vertices, the one adjacent to b is labeled f and the one adjacent to e is labeled g.

Firstly, let us begin with the acyclic orientation of G that was introduced above for disproving 4. To determine
the exact number of linear extensions for this orientation, the edge connecting c and d was removed. Then, since
vertex a is larger than its four adjacent vertices, it can only be associated with the values 5, 6, or 7 in any linear
extension.

First, suppose a has value 5. Then vertices b, c, d, and e must have values 1, 2, 3, and 4 in some order, and the
two antennae then must have values 5 and 6. Which antenna has which value does not matter, since both are
maximums in every case. This case therefore reduces to assigning values to b, c, d, and e. Since assigning some
four values to b and c uniquely determines the remaining values, there are

(
4
2

)
= 6 ways to assign these values,

and so 2 · 6 = 12 linear extensions for which a has a value of 5.

Now suppose a has value 6. Then one of the antennae must have value 7, so suppose without loss of generality
that the one attached to e has a value 7, and in the end we will multiply by 2 to account for this. Then, if the
second antenna has value 5, similarly to above there will be

(
4
2

)
= 6 linear extensions. If it has value 4, then c

or d must have value 5. If c has value 5, then by similar logic to above the value of b uniquely determines the
remaining values, so there are 3 such cases. Similarly if d has value 5 then there are 3 cases, so there are 6 total
cases if the second antenna has value 4. If the second antenna has value 3, then the value of b must be either 2
or 1. If b is 2, then a can be 4 or 5, and the remaining vertices are determined, for 2 cases. If b is 1 then a can be
2, 4 or 5, and the remaining vertices are determined, for 3 cases. Therefore, if the second antenna has value 3,
then there are 2 + 3 = 5 cases. Finally, suppose the second antenna has value 2 (it cannot have value 1 since it
is greater than b). Then the value of b must be 1, and from this the value of c completely determines the other
vertices. Since c can be 3, 4, or 5, there are 3 cases here. In total, if a has value 6, there are 2(6 + 6 + 5 + 3) = 40
cases.

Finally, suppose a has value 7. Since a now has the maximum value, it can be removed from the graph, leaving
two disconnected paths of length 2. For the path containing b and c, we can pick

(
6
3

)
= 20 of the numbers to be

in that path. The maximum of these numbers must be at b; otherwise, the other two can be in any order, so
there are 2 · 20 = 40 ways to order the elements on one side. Similarly, there are 2 ways to order the minimal
elements on the other side, for a total of 40 · 2 = 80 cases when a has a value of 7.

In total, if the top edge is removed, there are 12 + 40 + 80 = 112 linear extensions. If the top edge is returned,
by the symmetry of the orientation, there are equal numbers of linear extensions for both ways it is oriented, so
if we choose one direction for it to be oriented, there are 112

2 = 66 linear extensions.
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Now I will count the number of linear extensions of a slightly different orientation. Take the same orientation
as above, but with the edge between b and c oriented towards b, and the antenna from b oriented towards b.
Casework similar to that above is needed.

Firstly, suppose a has value 6. Then, since the antenna from e is the only vertex not less than a, it must have
value 7. This leaves a path with 5 vertices alternating up and down. The number of cases here is then known
to be the fifth Euler number (also known as the up/down numbers), which is 16.

Then, the only remaining case is when a has a value of 7. This produces a path, this time with 6 vertices,
again alternating up and down. The number of cases is then the sixth Euler number, known to be 61.

In total, then, for this orientation, there are 16 + 61 = 77 linear extensions. It can then be seen that this is
the maximal possible number of linear extensions of any acyclic orientation of G. However, this orientation is
not natural for G in any obvious way. �

Motivated by the new challenges presented in Example 2, the main scope for the remainder of our efforts will
be to study these conjectures exclusively for minimal non-comparability graphs. As suggested from our words,
one such example of a minimal non-comparability graph is precisely the graph presented in Example 2, which
in fact belongs to a larger infinite class of minimal non-comparability graphs. All the classes of minimal non-
comparability graphs, finite and infinite, were discovered in a fundamental work of Tibor Gallai, not available
in English as of now. However, descriptions of these graphs can be found in [TJMJ76].

4. Odd Anti-cycles and Related Graphs

For ease of communication, suppose that our graphs hereon have n vertices and have these vertices positioned
on a circle so that they form a regular n-gon. In this section, we will compute the maximal number of linear
extensions of both odd cycles and anti-cycles.

To begin, for the sake of completeness, I will find the maximum number of linear extensions for odd cycles.

Definition 6. Let k ∈ P. The k-th Euler number, or up-down number, is the total number of permutations
(a1, a2, . . . , ak) of the set {1, 2, 3, . . . , k} such that a1 > a2 < a3 > a4 < . . . .

Theorem 5. Given an odd cycle on n vertices, the maximum number of linear extensions over all acyclic
orientations is 1

2En, where En is the n-th Euler number.

Proof. By Theorem 2, the maximum number of linear extensions for an odd cycle occurs when the edge directions
alternate clockwise and counterclockwise, and there is exactly one two-directed path. Removing one edge of the
two-directed path yields a path graph on n vertices with an orientation where edge directions are alternating.
By a simple inspection, the number of linear extensions of this acyclic orientation of the n-path graph is En.
The removed edge compares the two end-vertices of the path graph.

Figure 6. Enumerating Linear Extensions on an Odd Cycle

By the symmetry of this acyclic orientation, and since n is odd, we can flip each linear extension of this
orientation, so that the number corresponding to the k-th vertex from one end is now the number corresponding
to the (n + 1− k)-th vertex from that same end of the path. This flip labelling is also a linear extension of the
same acyclic orientation. We can therefore pair each extension with its flip, so that for any pair, the largest
end-vertex in one linear extension will be the smallest end-vertex in its partner. Therefore, a given end-vertex
is larger than the other in exactly half of the linear extensions, so the number of linear extensions for an odd
cycle is 1

2En. �

Continuing, an odd anti-cycle is the complement of a cycle with an odd number of vertices. Odd anti-cycles
are also examples of minimal non-comparability graphs.

Define a k-removed graph on n vertices to be the resultant graph when exactly the edges with the k
smallest lengths are removed from the complete graph Kn, and where edge lengths are measured in our pictorial
representation of the graph in which vertices form a regular n-gon. Then, the 1-removed graph on n vertices
with n odd is an odd anti-cycle, and a n−3

2 -removed graph on n vertices, again with n odd, is an odd cycle. For
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k ≥ 1, by definition, no consecutive vertices of the k-removed n-gon will be connected, since these constitute the
smallest edges.

Figure 7. A 2-removed graph on 9 vertices

Theorem 6. For any integer k with n−3
2 ≥ k ≥ 1, with n odd, any acyclic orientation of a k-removed graph on

n vertices has two comparable vertices that are consecutive in the regular n-gon.

Proof. Suppose, on the contrary, that there are no such pairs of comparable vertices. Consider the edges
connected to some arbitrary vertex. If there are two consecutive diagonals of the n-gon, one directed in and one
directed out of our vertex, then this induces a comparability relation between two consecutive vertices of the
n-gon, contradiction. However, if, for any vertex, there exists at least one edge directed in and one directed out
of it, then there must exist two consecutive edges in opposite directions. Therefore, every vertex must be either
a maximum or a minimum. Now consider a line of symmetry passing through one vertex. By construction and
since the graph is connected (since it contains a spanning odd cycle as subgraph), there must exist two edges
connecting the vertex passing through the line of symmetry to those two closest to the line of symmetry but
not on it. If the vertex on the line of symmetry is a maximum, then these edges are directed away from the two
vertices closest to the line of symmetry, so those two vertices must be minimums, and therefore are the same
type of extremum. Similarly, if the vertex on the line of symmetry is a minimum, then the two vertices closest
to the line of symmetry are both maximums, and are again the same type of extremum. Since this works with
every line of symmetry, any two consecutive vertices of the n-gon are the same type of extremum, so every vertex
of the graph is of the same type. However, we cannot have an acyclic orientation of a connected graph where
every vertex is a maximum or every vertex is a minimum, contradiction. Therefore, there must two consecutive
vertices of the n-gon that are comparable. �

In particular, since k ≥ 1, there are no edges between consecutive vertices of the n-gon, so a k-removed graph
on n vertices with n−3

2 ≥ k ≥ 1 is not a comparability graph.

Now, define an orientation of a k-removed graph on n vertices (n odd) with n−3
2 ≥ k ≥ 1 as follows. Label

the vertices in counter-clockwise order, 1, 2, · · · , n, and direct each existing edge from the smaller to the larger
number. Since the k smallest edges are removed, this means that each vertex does not connect to the k closest
vertices on either side of it. Therefore, the vertices labeled 1 through k + 1 are all minimal, and the vertices
labeled n − k through n are all maximal, and there are k + 1 of each. Call this the rotary orientation of the
k-removed graph on n vertices.

We will now look at the coloring induced by this rotary orientation.

Theorem 7. The rotary orientation always induces a minimal proper coloring on a k-removed graph on n
vertices.

Proof. Fix a rotary orientation on the graph. Suppose we have colors c0, c1, · · · , cm−1, where for all i ∈
{0, 1, . . . ,m − 1}, ci is the color corresponding to a vertex that ends a maximal (by containment of edges)
directed path of length i in the orientation. The k + 1 minimal elements will all be colored c0. Then, the next
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Figure 8. A 2-removed graph on 9 vertices with the rotary orientation

k + 1 vertices in a counter-clockwise direction will, by construction, have their only inward edges coming from
those minimal elements, so they are assigned color c1. Continuing counter-clockwise in this manner, the next
k + 1 vertices will be assigned color c2, and so on, so since there are n vertices to begin with, the total number
of colors is b n

k+1c. Now suppose there exists a proper coloring with fewer than b n
k+1c colors. Then there must

be a color assigned to at least n
b n
k+1 c

> n
n

k+1
= k + 1 vertices, so there must be a color assigned to at least k + 2

vertices. However, any set of k + 2 vertices has at least k + 1 different distances between the vertices, and since
only k lengths of edges were removed, there must be an edge remaining. This is a contradiction since this creates
an edge between two vertices of the same color, and so b n

k+1c is the chromatic number of a k-removed graph on
n vertices. Therefore, the rotary orientation induces a minimal proper coloring. �

If these orientations are optimal orientations, then this satisfies Conjecture 2. In fact, we can show that for
k = 1 (that is, for odd anti-cycles), this orientation is indeed optimal.

Theorem 8. When k = 1, the rotary orientation for the k-removed graph on n vertices has the maximal number
of linear extensions over all acyclic orientations.

Proof. From the previous theorem, every orientation on a k-removed graph on n vertices induces a directed
edge between two consecutive vertices of the n-gon. For every orientation, adding this induced edge to the
graph will not change the linear extensions. Moreover, from the symmetry of the graph, adding any such edge
will result in the same graph modulo isomorphism, so there is a bijection between the linear extensions of any
acyclic orientation of the k-removed graph on n vertices and the linear extensions of some acyclic orientation
of the graph obtained by adding an edge between consecutive vertices. However, we can verify that the rotary
orientation induces (by comparability) exactly one edge between the vertices labelled with 1 and n, and so this
results in a transitive orientation when that edge is added when k = 1. We know from Theorem 3 that exactly
the transitive orientations create the maximum number of linear extensions, and so from the bijection, the above
orientation will introduce the maximum number of linear extensions for 1-removed graphs on n vertices. �

From symmetry, the same orientation but rotated or reflected will also introduce the maximum number of
linear extensions. Interestingly, we can now count the maximum number of linear extensions over all acyclic
orientations for odd anti-cycles of n vertices with following theorem.

Theorem 9. Define the Fibonacci Numbers as F0 = F1 = 1 and Fk = Fk−1 + Fk−2 for integers k ≥ 2. Then,
for an odd anti-cycle with n vertices, the rotary orientation has Fn linear extensions.

Proof. Since there is an induced edge between the consecutive maximum and minimum vertices, add that
directed edge to the graph. The resulting graph then still has the same number of linear extensions as the odd
anti-cycle. Now, define a directed even anti-cycle in the same manner as above (i.e. consider the complement
of an even cycle, then number the vertices in counter-clockwise order, and lastly direct edges according to the
numbering), and again add a directed edge between from the vertex with label 1 to the vertex with label n.
Now, for three vertices define the corresponding graph to have exactly one directed edge, and for two vertices
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Figure 9. The rotary orientation on an anti-cycle of 7 vertices

define the corresponding graph to be the empty graph on 2 vertices. Collectively, call these directed anti-cycles
with an extra edge altered anti-cycles.

Let f(n) denote the number of linear extensions for the altered anti-cycle on n vertices. We easily have
f(0) = f(1) = 1, f(2) = 2, and f(3) = 3. With some casework, we can also find that f(4) = 5 and f(5) = 8.

Now we proceed inductively. Take an altered anti-cycle with n ≥ 6 vertices. Either the two minimum vertices
correspond to {1, 2} in some order, or the vertex with indegree 1 corresponds to 2 and the two minimum vertices
correspond to {1, 3}, with the vertex corresponding to 1 not being adjacent to the vertex corresponding to 2.
The same situation arises when dealing with the two maximum vertices and the vertex with outdegree 1. We
now separate the linear extensions in four cases.

In the first case, the two minimum vertices correspond to {1, 2} and the two maximum vertices correspond to
{n− 1, n}. This can happen in any order, for 2 · 2 = 4 possibilities. Now remove the four maximum/minimum
vertices and any edges that connect to them, and we are left wih an altered anti-cycle on n−4 vertices, also with
the conjectured configuration. This new graph has f(n− 4) linear extensions, so in this case there are 4f(n− 4)
linear extensions.

The case where the two minimum vertices correspond to {1, 3} and the two maximum vertices correspond to
{n−2, n} is similar. In this case, however, there is only one possible positioning for {1, 2, 3} and {n−2, n−1, n},
and removing those six vertices results in an altered anti-cycle with n− 6 vertices.

Now, if the two minimum vertices correspond to {1, 2} while the two maximum vertices correspond to {n−
2, n}, then the vertex with outdegree 1 must correspond to the value n− 1, while the vertex with indegree 1 has
no such restriction. Therefore, we can swap the values 1 and 2 for 2 possibilities. Removing the maximum and
minimum vertices as well as the vertex with outdegree 1 results in an altered anti-cycle with n − 5 vertices, so
the total number of linear extensions in this case is 2f(n−5). Similarly, if the two minimum vertices correspond
to {1, 3} and the two maximum vertices correspond to {n− 1, n}, we also have 2f(n− 5) linear extensions.

In total, there are 4f(n−4)+4f(n−5)+f(n−6) linear extensions, so f(n) = 4f(n−4)+4f(n−5)+f(n−6).
From the recursive definition Fn = Fn−1 +Fn−2 of the Fibonacci numbers, we also have Fn = 4Fn−4 + 4Fn−5 +
Fn−6. Therefore, since f(n) = Fn for 0 ≤ n ≤ 5, by induction f(n) = Fn for all positive integers n. �

5. Random Graphs

For real-world problems, it is not always known with a high degree of certainty whether some edge exists or
not. For example, in the case of disease spreading, instead of knowing for sure whether two individuals met at a
certain point, we usually will only know the probability that they have met based, for example, on their locations.
In this case, such a graph would be modeled with probabilities associated to each edge, and would be known
as a random graph. Staying with the example of disease spread, the problem would still be to determine the
most probable sources of the disease, equivalent to finding the orientations that maximize the number of linear
extensions in the case of non-random graphs. However, for random graphs, orientations and linear extensions
are not even well-defined. In this section we introduce intuitive extensions for each of these concepts to random
graphs, and attempt to extend the previous conjectures and theorems to random graphs as well.

It is possible for an edge of a random graph to have an associated probability of 0. If this is the case, that edge
can be effectively ignored, simplifying somewhat the heavy calculations. Even more, edges with sufficiently small
probabilities could sometimes be assumed to have an effective probability of 0. Firstly, we define an orientation
on a random graph.
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Definition 7. Given a random graph with n vertices, an acyclic orientation over the random graph is defined
to be an acyclic orientation over the complete graph Kn on n vertices, i.e. a transitive tournament on Kn.

Since there are n! acyclic orientations of the complete graph Kn, there are n! acyclic orientations over any
random graph with n vertices. Now, since a random graph can be effectively regarded as the set of all subgraphs
of the corresponding complete graph, each with an associated probability of existence, the orientation of the
random graph can now be extended to an orientation of each of its subgraphs. This is simple: If an edge exists
in a subgraph of the random graph, then that edge is oriented in the same way as it is in the random graph
orientation.

With this in mind, we can define the number of linear extensions on a random graph with a given acyclic
orientation.

Given a random graph G(V,
(
V
2

)
, p) with n vertices, where p :

(
V
2

)
→ [0, 1] is the existence probability function,

and an acyclic orientation O of this graph, there are 2(n
2) possible subgraphs of the random graph, counting the

number of subsets of the
(
n
2

)
edges. All such subgraphs have an associated probability equal to the probability

of that subgraph occurring under p. That is, given a subgraph H(V,E) of G, the probability pH that it occurs
is equal to:

pH :=
∏
e∈E

pe
∏
f 6∈E

(1− pf ),

where pe is the probability associated to each edge. Now, denote by εO(H) the number of linear extensions
of the simple subgraph H with acyclic orientation obtained (by restriction) from O.

Definition 8. The number of linear extensions of the random graph G with acyclic orientation O is:∑
H∈S

pHεO(H),

where S is the set of 2(n
2) subgraphs of the complete graph on n vertices.

Even with computer assistance, to find this value is computationally unviable for all but the simplest graphs.
Here I illustrate a simple example to show the kind of computation involved.

Example 3.

Suppose we have a random graph on 3 vertices, labeled a, b, and c. Suppose the orientation on this complete
graph is (a, b), (b, c), (a, c). Also suppose the probability associated with (a, b) is 1

3 , the probability associated

with (b, c) is 1
2 , and the probability associated with (a, c) is 2

3 . There are 2(3
2) = 8 possible subgraphs.

The probability of a complete graph is
(
1
3

) (
1
2

) (
2
3

)
= 1

9 . There is only one linear extension in this case.

The probability of the graph containing only (a, b) and (b, c) is
(
1
3

) (
1
2

) (
1
3

)
= 1

18 . Again, this has only one
linear extension.

The probability of the graph containing only (a, b) and (a, c) is
(
1
3

) (
1
2

) (
2
3

)
= 1

9 . This subgraph has two
possible linear extensions.

The probability of the graph containing only (b, c) and (a, c) is
(
2
3

) (
1
2

) (
2
3

)
= 2

9 . Again, there are two possible
linear extensions.

The probability of the graph containing only (a, b) is
(
1
3

) (
1
2

) (
1
3

)
= 1

18 . This graph has three possible linear
extensions.

The probability of the graph containing only (b, c) is
(
2
3

) (
1
2

) (
1
3

)
= 1

9 . This graph also has three possible
linear extensions.

The probability of the graph containing only (a, c) is
(
2
3

) (
1
2

) (
2
3

)
= 2

9 . This graph also has three possible
linear extensions.

The probability of the graph containing no edges is
(
2
3

) (
1
2

) (
1
3

)
= 1

9 . This graph has 3! = 6 linear extensions.

In total, the number of linear extensions associated with this orientation of this probability graph is(
1

9

)
(1) +

(
1

18

)
(1) +

(
1

9

)
(2) +

(
2

9

)
(2) +

(
1

18

)
(3) +

(
1

9

)
(3) +

(
2

9

)
(3) +

(
1

9

)
(6)

=
8

3
.

�
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This example illustrates an important point in calculating the number of linear extensions of a random graph.
Firstly, subgraphs of the complete graph are not necessarily connected, and it may even be the case that some
vertices are not connected to any others, but they are still factored in when determining the number of linear
extensions of the subgraph. Secondly, the number of linear extensions of a random graph is not necessarily an
integer number.

This is only one of the 6 possible orientations of this random graph. I will not go through the rest of the
calculation in this paper, but the result is that this orientation, along with the orientation (b, a), (b, c), (c, a),
results in the maximum number of linear extensions. Intuition agrees with this result - in both orientations b is
not the originator of the disease, which is intuitively most probable because the edges connected to b have the
lowest probabilities.

I now present a theorem that expresses the number of linear orientations of a random graph in a different
way, possibly reducing the amount of calculation needed. Let G be a random graph on n vertices with some
acyclic orientation O, and let R denote the set of n! total orderings of vertices of the complete graph Kn. For
some total ordering r ∈ R, let pr,O denote the sum of the existence probabilities of all directed subgraphs of G
for which r is a valid linear extension, or equivalently, the probability that r is a viable linear extension.

Theorem 10. The number of linear extensions of G with acyclic orientation O is also equal to:∑
r∈R

pr,O.

Here, instead of summing 2(n
2) terms over all the possible subgraphs, we are only summing n! terms over all

total orderings of n vertices, a significant improvement. Also, using this, we are no longer required to have to
find the number of linear extensions for each of these subgraphs, a task that is NP-hard.

Proof. This value is equal to
∑

r∈RE[graphs with r as a linear extension] by linearity of expectation, and this
is equal to E[number of linear extensions] again by linearity of expectation, which is the original definition of
the number of linear extensions of a random graph. �

Now, with two formulations for the number of linear extensions for a random graph, we can now extend the
Max-Cut Problem to random graphs. This is known as the Weighted Max-Cut Problem.

Problem 2. Given a random graph G, determine a partition of the vertices of G into two classes such that the
sum of the probabilities of each edge with one vertex in each class is maximized.

For the case of the random graph on 3 vertices as defined in Example 2, the solution to the Weighted Max-Cut
Problem can easily be found to be the partition {a, b} and {c}.

To work through some more manageable cases, define a random bipartite graph to be a random graph whose
vertices can be partitioned into two subsets such that the probability of an edge between any two members of
the same subset is 0.

Theorem 11. Given a random bipartite graph and a solution to the Weighted Max-Cut Problem for that graph,
there exists an orientation of the graph that is both bipartite with respect to the optimal partition, and also
maximizes the number of linear extensions.

Proof. Firstly, it is clear that the solution to the Weighted Max-Cut Problem for a random bipartite graph
is exactly the bipartite partition. Now, I claim that, in a random bipartite partition, the orientations that
maximizes the number of linear extensions are exactly the bipartite orientations (since all edges between vertices
in the same partition have probability 0, these edges are effectively ignored with regards to the orientation.)
Consider the first definition of the number of linear extensions of a random graph.∑

H∈S
pHεO(H),

where the variables are defined the same as in Definition 7. In each term, the value of pH is constant with
respect to the orientation. Also, removing edges from a bipartite graph still results in a bipartite graph, and by
Theorem 1, it is known that the orientations that maximize the number of linear extensions in a bipartite graph
are the bipartite orientations. Therefore, if O is a bipartite orientation for the random graph, then it is also a
bipartite orientation for all subgraphs of the random graph, and it therefore maximises εO(H) for all subgraphs
H. Therefore, since each individual term is maximized with a bipartite orientation, then the entire sum is
maximized with a bipartite orientation, and so the orientations that maximize the number of linear extensions
in a random bipartite graph are exactly the bipartite orientations. �

In essence, this extends Conjecture 1 to random bipartite graphs; again, however, this is not true in general.
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